ceras
yet another deep learning engine
Public Types | Public Member Functions | Public Attributes | List of all members
ceras::compiled_model< Model, Optimizer, Loss > Struct Template Reference

#include <model.hpp>

Public Types

typedef Model::input_layer_type io_layer_type
 

Public Member Functions

 compiled_model (Model const &m, io_layer_type const &input_place_holder, io_layer_type const &ground_truth_place_holder, Loss const &loss, Optimizer const &optimizer)
 
template<Tensor Tsor>
auto evaluate (Tsor const &inputs, Tsor const &outputs, unsigned long batch_size=32)
 
template<Tensor Tsor>
auto fit (Tsor const &inputs, Tsor const &outputs, unsigned long batch_size, unsigned long epoch=1, int verbose=0, double validation_split=0.0)
 
template<Tensor Tsor>
auto train_on_batch (Tsor const &input, Tsor const &output)
 
template<Tensor Tsor>
auto predict (Tsor const &input_tensor)
 
template<Expression Exp>
auto operator() (Exp const &ex) const noexcept
 
void trainable (bool t)
 

Public Attributes

decltype(std::declval< Optimizer >()(std::declval< Loss & >())) typedef optimizer_type
 
Model model_
 
io_layer_type input_place_holder_
 
io_layer_type ground_truth_place_holder_
 
Loss loss_
 
Optimizer optimizer_
 
optimizer_type compiled_optimizer_
 

Member Typedef Documentation

◆ io_layer_type

template<typename Model , typename Optimizer , typename Loss >
typedef Model::input_layer_type ceras::compiled_model< Model, Optimizer, Loss >::io_layer_type

Constructor & Destructor Documentation

◆ compiled_model()

template<typename Model , typename Optimizer , typename Loss >
ceras::compiled_model< Model, Optimizer, Loss >::compiled_model ( Model const &  m,
io_layer_type const &  input_place_holder,
io_layer_type const &  ground_truth_place_holder,
Loss const &  loss,
Optimizer const &  optimizer 
)
inline

Member Function Documentation

◆ evaluate()

template<typename Model , typename Optimizer , typename Loss >
template<Tensor Tsor>
auto ceras::compiled_model< Model, Optimizer, Loss >::evaluate ( Tsor const &  inputs,
Tsor const &  outputs,
unsigned long  batch_size = 32 
)
inline

Calculate the loss for the model in test model.

Parameters
inputsInput data. A tensor of shape (samples, input_shape).
outputsOutput data. A tensor of shape (samples, output_shape).
batch_sizeNumber of samples per batch of computation. Default to 32.
Returns
Test loss. A scalar.

◆ fit()

template<typename Model , typename Optimizer , typename Loss >
template<Tensor Tsor>
auto ceras::compiled_model< Model, Optimizer, Loss >::fit ( Tsor const &  inputs,
Tsor const &  outputs,
unsigned long  batch_size,
unsigned long  epoch = 1,
int  verbose = 0,
double  validation_split = 0.0 
)
inline

Train the model on the selected dataset for a fixed numbers of epoches.

Parameters
inputsInput data. A tensor of shape (samples, input_shape).
outputsInput data. A tensor of shape (samples, output_shape).
batch_sizeNumber of samples per gradient update. Should agree with the batch size in the optimizer.
epochNumber of epoches to train the dataset.
verboseVerbosity mode. 0 for slient. 1 for one line per epoch.
validation_splitFraction of the training data that will be used for validation. A floating number in range [0, 1].
Returns
A tuple of two vectors. The first vector gives the historical errors on the training data. The second vector gives the historical errors on the validation data.

Example:

model m{ ... };
auto cm = m.compile( ... );
tensor<float> inputs, outputs;
//...
unsigned long batch_size = 32;
unsigned long epoch = 10;
int verbose = 1;
double validation_split = 0.2;
auto errors = cm.fit( inputs, outputs, batch_size, epoch, verbose, validation_split );

◆ operator()()

template<typename Model , typename Optimizer , typename Loss >
template<Expression Exp>
auto ceras::compiled_model< Model, Optimizer, Loss >::operator() ( Exp const &  ex) const
inlinenoexcept

◆ predict()

template<typename Model , typename Optimizer , typename Loss >
template<Tensor Tsor>
auto ceras::compiled_model< Model, Optimizer, Loss >::predict ( Tsor const &  input_tensor)
inline

◆ train_on_batch()

template<typename Model , typename Optimizer , typename Loss >
template<Tensor Tsor>
auto ceras::compiled_model< Model, Optimizer, Loss >::train_on_batch ( Tsor const &  input,
Tsor const &  output 
)
inline

Running a single updated on a single batch of data.

Parameters
inputThe input data to train the model. A tensor of shape (batch_size, input_shape).
outputThe output data to train the model. A tensor of shape (batch_size, output_shape).
Returns
Training loss. A scalar.

Example code:

auto m = model{ ... };
auto cm = m.compile( ... );
for ( auto idx : range( 1024 ) )
{
auto x = ...; // get batch input
auto y = ...; // get batch output
cm.train_on_batch( x, y );
}
*auto y
Definition: operation.hpp:627

◆ trainable()

template<typename Model , typename Optimizer , typename Loss >
void ceras::compiled_model< Model, Optimizer, Loss >::trainable ( bool  t)
inline

Member Data Documentation

◆ compiled_optimizer_

template<typename Model , typename Optimizer , typename Loss >
optimizer_type ceras::compiled_model< Model, Optimizer, Loss >::compiled_optimizer_

◆ ground_truth_place_holder_

template<typename Model , typename Optimizer , typename Loss >
io_layer_type ceras::compiled_model< Model, Optimizer, Loss >::ground_truth_place_holder_

◆ input_place_holder_

template<typename Model , typename Optimizer , typename Loss >
io_layer_type ceras::compiled_model< Model, Optimizer, Loss >::input_place_holder_

◆ loss_

template<typename Model , typename Optimizer , typename Loss >
Loss ceras::compiled_model< Model, Optimizer, Loss >::loss_

◆ model_

template<typename Model , typename Optimizer , typename Loss >
Model ceras::compiled_model< Model, Optimizer, Loss >::model_

◆ optimizer_

template<typename Model , typename Optimizer , typename Loss >
Optimizer ceras::compiled_model< Model, Optimizer, Loss >::optimizer_

◆ optimizer_type

template<typename Model , typename Optimizer , typename Loss >
decltype(std::declval<Optimizer>()(std::declval<Loss&>())) typedef ceras::compiled_model< Model, Optimizer, Loss >::optimizer_type

The documentation for this struct was generated from the following file: