#include <model.hpp>
|
| compiled_model (Model const &m, io_layer_type const &input_place_holder, io_layer_type const &ground_truth_place_holder, Loss const &loss, Optimizer const &optimizer) |
|
template<Tensor Tsor> |
auto | evaluate (Tsor const &inputs, Tsor const &outputs, unsigned long batch_size=32) |
|
template<Tensor Tsor> |
auto | fit (Tsor const &inputs, Tsor const &outputs, unsigned long batch_size, unsigned long epoch=1, int verbose=0, double validation_split=0.0) |
|
template<Tensor Tsor> |
auto | train_on_batch (Tsor const &input, Tsor const &output) |
|
template<Tensor Tsor> |
auto | predict (Tsor const &input_tensor) |
|
template<Expression Exp> |
auto | operator() (Exp const &ex) const noexcept |
|
void | trainable (bool t) |
|
◆ io_layer_type
template<typename Model , typename Optimizer , typename Loss >
◆ compiled_model()
template<typename Model , typename Optimizer , typename Loss >
◆ evaluate()
template<typename Model , typename Optimizer , typename Loss >
template<Tensor Tsor>
auto ceras::compiled_model< Model, Optimizer, Loss >::evaluate |
( |
Tsor const & |
inputs, |
|
|
Tsor const & |
outputs, |
|
|
unsigned long |
batch_size = 32 |
|
) |
| |
|
inline |
Calculate the loss for the model in test model.
- Parameters
-
inputs | Input data. A tensor of shape (samples, input_shape). |
outputs | Output data. A tensor of shape (samples, output_shape). |
batch_size | Number of samples per batch of computation. Default to 32. |
- Returns
- Test loss. A scalar.
◆ fit()
template<typename Model , typename Optimizer , typename Loss >
template<Tensor Tsor>
auto ceras::compiled_model< Model, Optimizer, Loss >::fit |
( |
Tsor const & |
inputs, |
|
|
Tsor const & |
outputs, |
|
|
unsigned long |
batch_size, |
|
|
unsigned long |
epoch = 1 , |
|
|
int |
verbose = 0 , |
|
|
double |
validation_split = 0.0 |
|
) |
| |
|
inline |
Train the model on the selected dataset for a fixed numbers of epoches.
- Parameters
-
inputs | Input data. A tensor of shape (samples, input_shape). |
outputs | Input data. A tensor of shape (samples, output_shape). |
batch_size | Number of samples per gradient update. Should agree with the batch size in the optimizer. |
epoch | Number of epoches to train the dataset. |
verbose | Verbosity mode. 0 for slient. 1 for one line per epoch. |
validation_split | Fraction of the training data that will be used for validation. A floating number in range [0, 1]. |
- Returns
- A tuple of two vectors. The first vector gives the historical errors on the training data. The second vector gives the historical errors on the validation data.
Example:
model m{ ... };
auto cm = m.compile( ... );
tensor<float> inputs, outputs;
unsigned long batch_size = 32;
unsigned long epoch = 10;
int verbose = 1;
double validation_split = 0.2;
auto errors = cm.fit( inputs, outputs, batch_size, epoch, verbose, validation_split );
◆ operator()()
template<typename Model , typename Optimizer , typename Loss >
template<Expression Exp>
◆ predict()
template<typename Model , typename Optimizer , typename Loss >
template<Tensor Tsor>
◆ train_on_batch()
template<typename Model , typename Optimizer , typename Loss >
template<Tensor Tsor>
auto ceras::compiled_model< Model, Optimizer, Loss >::train_on_batch |
( |
Tsor const & |
input, |
|
|
Tsor const & |
output |
|
) |
| |
|
inline |
Running a single updated on a single batch of data.
- Parameters
-
input | The input data to train the model. A tensor of shape (batch_size, input_shape). |
output | The output data to train the model. A tensor of shape (batch_size, output_shape). |
- Returns
- Training loss. A scalar.
Example code:
auto m = model{ ... };
auto cm = m.compile( ... );
for ( auto idx : range( 1024 ) )
{
auto x = ...;
cm.train_on_batch( x,
y );
}
*auto y
Definition: operation.hpp:627
◆ trainable()
template<typename Model , typename Optimizer , typename Loss >
◆ compiled_optimizer_
template<typename Model , typename Optimizer , typename Loss >
◆ ground_truth_place_holder_
template<typename Model , typename Optimizer , typename Loss >
◆ input_place_holder_
template<typename Model , typename Optimizer , typename Loss >
◆ loss_
template<typename Model , typename Optimizer , typename Loss >
◆ model_
template<typename Model , typename Optimizer , typename Loss >
◆ optimizer_
template<typename Model , typename Optimizer , typename Loss >
◆ optimizer_type
template<typename Model , typename Optimizer , typename Loss >
decltype(std::declval<Optimizer>()(std::declval<Loss&>())) typedef ceras::compiled_model< Model, Optimizer, Loss >::optimizer_type |
The documentation for this struct was generated from the following file:
- /home/feng/workspace/github.repo/ceras/include/model.hpp