ceras
yet another deep learning engine
Namespaces | Classes | Typedefs | Functions | Variables
ceras Namespace Reference

Namespaces

 ceras_private
 
 dataset
 

Classes

struct  complex
 
struct  is_complex
 
struct  is_complex< complex< Real_Ex, Imag_Ex > >
 
struct  constant
 Creates a constant expression from a tensor-like object. More...
 
struct  is_constant
 
struct  is_constant< constant< Tsor > >
 
struct  compiled_model
 
struct  model
 
struct  unary_operator
 
struct  binary_operator
 
struct  is_unary_operator
 
struct  is_unary_operator< unary_operator< Operator, Forward_Action, Backward_Action > >
 
struct  is_binary_operator
 
struct  is_binary_operator< binary_operator< Lhs_Operator, Rhs_Operator, Forward_Action, Backward_Action > >
 
struct  sgd
 
struct  adagrad
 
struct  rmsprop
 
struct  adadelta
 
struct  adam
 
struct  gradient_descent
 
struct  place_holder_state
 
struct  place_holder
 
struct  is_place_holder
 
struct  is_place_holder< place_holder< Tsor > >
 
struct  tensor
 
struct  is_tensor
 
struct  is_tensor< tensor< T, A > >
 
struct  view_1d
 
struct  view_2d
 
struct  view_3d
 
struct  view_4d
 
struct  view
 N-Dimentional view of 1D memory. More...
 
struct  view< T, 1 >
 
struct  view< T, 2 >
 
struct  view< T, 3 >
 
struct  view< T, 4 >
 
struct  value
 
struct  is_value
 
struct  is_value< value< T > >
 
struct  tensor_deduction
 
struct  variable_state
 
struct  regularizer
 
struct  variable
 
struct  is_variable
 
struct  is_variable< variable< Tsor > >
 

Typedefs

template<typename Loss , typename T >
using ada_grad = adagrad< Loss, T >
 
template<typename Loss , typename T >
using rms_prop = rmsprop< Loss, T >
 
template<typename Loss , typename T >
using ada_delta = adadelta< Loss, T >
 
template<typename T >
using default_allocator = std::allocator< T >
 
template<typename T >
using array = view_1d< T >
 
template<typename T >
using matrix = view_2d< T >
 
template<typename T >
using cube = view_3d< T >
 
template<typename T >
using tesseract = view_4d< T >
 

Functions

template<Expression Ex>
constexpr auto softmax (Ex const &ex) noexcept
 Softmax activation function, an unary operator. More...
 
template<Expression Ex>
auto selu (Ex const &ex) noexcept
 Scaled Exponential Linear Unit (SELU) activation function, an unary operator. If x>0, returns 1.0507 x; Otherwise, returns 1.67326*1.0507*(exp(x)-1) More...
 
template<Expression Ex>
auto softplus (Ex const &ex) noexcept
 Softplus function, an unary operator. Returns log(exp(x)+1). More...
 
template<Expression Ex>
auto softsign (Ex const &ex) noexcept
 Softsign function, an unary operator. Returns x / (abs(x) + 1). More...
 
template<Expression Ex>
auto sigmoid (Ex const &ex) noexcept
 Sigmoid function, an unary operator. Returns 1 / (exp(-x) + 1). More...
 
template<Expression Ex>
auto relu (Ex const &ex) noexcept
 Relu function, an unary operator. Returns x if positive, 0 otherwise. More...
 
template<Expression Ex>
auto relu6 (Ex const &ex) noexcept
 Rectified Linear 6 function, an unary operator. Returns min(max(features, 0), 6). More...
 
template<typename T >
requires std::floating_point< T > auto leaky_relu (T const factor=0.2) noexcept
 Leaky Rectified Linear function, an unary operator. Returns x if positive, alpha x otherwise. alpha defaults to 0.2. More...
 
template<Expression Ex>
auto negative_relu (Ex const &ex) noexcept
 
template<typename T = float>
requires std::floating_point< T > auto elu (T const alpha=1.0) noexcept
 Exponential Linear function, an unary operator. Returns x if positive, alpha* (exp(x)-1) otherwise. alpha defaults to 0.2. More...
 
template<Expression Ex>
auto exponential (Ex const &ex) noexcept
 Exponential function, an unary operator. Returns exp(x). More...
 
template<Expression Ex>
auto hard_sigmoid (Ex const &ex) noexcept
 Hard Sigmoid function, an unary operator. Piecewise linear approximation of the sigmoid function. More...
 
template<Expression Ex>
auto gelu (Ex const &ex) noexcept
 Gaussian Error function, an unary operator. GAUSSIAN ERROR LINEAR UNITS (GELUS) https://arxiv.org/pdf/1606.08415.pdf $f(x) = 0.5x (1 + tanh[\sqrt{2/\pi}(x + 0.044715x^3)])$ $df = x ( 1 + tanh[\sqrt{2/\pi}(x + 0.044715x^3)] ) + \sqrt(2/\pi) x sech^2[\sqrt(2/\pi) x (1+0.44715x^2) (1+0.134145x^2) ]$ where $sec^2(x) = 1 - tanh^2(x)$ derivative generated using service from https://www.symbolab.com/solver/derivative-calculator. More...
 
template<Expression Ex>
auto swish (Ex const &ex) noexcept
 Swish activation function. More...
 
template<Expression Ex>
auto silu (Ex const &ex) noexcept
 An alias name of activation swish. More...
 
template<Expression Ex>
auto crelu (Ex const &ex) noexcept
 Concatenated Rectified Linear Units, an activation function which preserves both positive and negative phase information while enforcing non-saturated non-linearity. More...
 
template<Expression Ex>
auto tank_shrink (Ex const &ex) noexcept
 Tank shrink function. More...
 
template<Expression Ex>
auto mish (Ex const &ex) noexcept
 Mish function. More...
 
template<Expression Ex>
auto lisht (Ex const &ex) noexcept
 Lisht function. More...
 
template<Expression Real_Ex, Expression Imag_Ex>
Real_Ex real (complex< Real_Ex, Imag_Ex > const &c) noexcept
 
template<Expression Real_Ex, Expression Imag_Ex>
Imag_Ex imag (complex< Real_Ex, Imag_Ex > const &c) noexcept
 
template<Complex C>
auto abs (C const &c) noexcept
 Returns the magnitude of the complex expression. More...
 
template<Complex C>
auto norm (C const &c) noexcept
 Returns the squared magnitude of the complex expression. More...
 
template<Complex C>
auto conj (C const &c) noexcept
 Returns the conjugate of the complex expression. More...
 
template<Expression Em, Expression Ep>
auto polar (Em const &em, Ep const &ep) noexcept
 Returns with given magnitude and phase angle. More...
 
template<Complex C>
auto arg (C const &c) noexcept
 Calculates the phase angle (in radians) of the complex expression. More...
 
template<Complex C>
auto operator+ (C const &c) noexcept
 Returns the complex expression. More...
 
template<Complex C>
auto operator- (C const &c) noexcept
 Negatives the complex expression. More...
 
template<Complex Cl, Complex Cr>
auto operator+ (Cl const &cl, Cr const &cr) noexcept
 Sums up two complex expressions. More...
 
template<Complex Cl, Complex Cr>
auto operator- (Cl const &cl, Cr const &cr) noexcept
 Subtracts one complex expression from the other one. More...
 
template<Complex Cl, Complex Cr>
auto operator* (Cl const &cl, Cr const &cr) noexcept
 Multiplies two complex expressions. Optimization here: (a+ib)*(c+id) = (ac-bd) + i(ad+bc) = (ac-bd) + i( (a+b)*(c+d)-ac-bd ) More...
 
template<Complex C, Expression E>
auto operator+ (C const &c, E const &e) noexcept
 Sums up a complex expression and an expression. More...
 
template<Complex C, Expression E>
auto operator+ (E const &e, C const &c) noexcept
 Sums up a complex expression and an expression. More...
 
template<Complex C, Expression E>
auto operator- (C const &c, E const &e) noexcept
 Subtracts an expression from a compression expression. More...
 
template<Complex C, Expression E>
auto operator- (E const &e, C const &c) noexcept
 Subtractsa complex expression from an expression. More...
 
template<Complex C, Expression E>
auto operator* (C const &c, E const &e) noexcept
 Multiplies a complex expression with an expression. More...
 
template<Complex C, Expression E>
auto operator* (E const &e, C const &c) noexcept
 Multiplies an expression with a compression expression. More...
 
auto Input ()
 
auto Conv2D (unsigned long output_channels, std::vector< unsigned long > const &kernel_size, std::vector< unsigned long > const &input_shape, std::string const &padding="valid", std::vector< unsigned long > const &strides={1, 1}, std::vector< unsigned long > const &dilations={1, 1}, bool use_bias=true, float kernel_regularizer_l1=0.0f, float kernel_regularizer_l2=0.0f, float bias_regularizer_l1=0.0f, float bias_regularizer_l2=0.0f)
 2D convolution layer. More...
 
auto Dense (unsigned long output_size, unsigned long input_size, bool use_bias=true, float kernel_regularizer_l1=0.0f, float kernel_regularizer_l2=0.0f, float bias_regularizer_l1=0.0f, float bias_regularizer_l2=0.0f)
 Densly-connected layer. More...
 
auto BatchNormalization (std::vector< unsigned long > const &shape, float threshold=0.95f, float kernel_regularizer_l1=0.0f, float kernel_regularizer_l2=0.0f, float bias_regularizer_l1=0.0f, float bias_regularizer_l2=0.0f)
 Applies a transformation that maintains the mean output close to 0 and the output standard deviation close to 1. More...
 
auto BatchNormalization (float threshold, std::vector< unsigned long > const &shape, float kernel_regularizer_l1=0.0f, float kernel_regularizer_l2=0.0f, float bias_regularizer_l1=0.0f, float bias_regularizer_l2=0.0f)
 
auto Concatenate (unsigned long axis=-1) noexcept
 
auto Add () noexcept
 
auto Subtract () noexcept
 
auto Multiply () noexcept
 
template<Expression Ex>
auto ReLU (Ex const &ex) noexcept
 
auto Softmax () noexcept
 
template<typename T = float>
auto LeakyReLU (T const factor=0.2) noexcept
 
template<typename T = float>
auto ELU (T const factor=0.2) noexcept
 
auto Reshape (std::vector< unsigned long > const &new_shape, bool include_batch_flag=true) noexcept
 
auto Flatten () noexcept
 
auto MaxPooling2D (unsigned long stride) noexcept
 
auto UpSampling2D (unsigned long stride) noexcept
 
template<typename T >
auto Dropout (T factor) noexcept
 
auto AveragePooling2D (unsigned long stride) noexcept
 
template<Expression Lhs_Expression, Expression Rhs_Expression>
constexpr auto mean_squared_logarithmic_error (Lhs_Expression const &lhs_ex, Rhs_Expression const &rhs_ex) noexcept
 
template<Expression Lhs_Expression, Expression Rhs_Expression>
constexpr auto squared_loss (Lhs_Expression const &lhs_ex, Rhs_Expression const &rhs_ex) noexcept
 
template<Expression Lhs_Expression, Expression Rhs_Expression>
constexpr auto mean_squared_error (Lhs_Expression const &lhs_ex, Rhs_Expression const &rhs_ex) noexcept
 
template<Expression Lhs_Expression, Expression Rhs_Expression>
constexpr auto mse (Lhs_Expression const &lhs_ex, Rhs_Expression const &rhs_ex) noexcept
 
template<Expression Lhs_Expression, Expression Rhs_Expression>
constexpr auto abs_loss (Lhs_Expression const &lhs_ex, Rhs_Expression const &rhs_ex) noexcept
 
template<Expression Lhs_Expression, Expression Rhs_Expression>
constexpr auto mean_absolute_error (Lhs_Expression const &lhs_ex, Rhs_Expression const &rhs_ex) noexcept
 
template<Expression Lhs_Expression, Expression Rhs_Expression>
constexpr auto mae (Lhs_Expression const &lhs_ex, Rhs_Expression const &rhs_ex) noexcept
 
template<Expression Lhs_Expression, Expression Rhs_Expression>
constexpr auto cross_entropy (Lhs_Expression const &lhs_ex, Rhs_Expression const &rhs_ex) noexcept
 
template<Expression Lhs_Expression, Expression Rhs_Expression>
constexpr auto binary_cross_entropy_loss (Lhs_Expression const &ground_truth, Rhs_Expression const &prediction) noexcept
 
template<Expression Lhs_Expression, Expression Rhs_Expression>
constexpr auto cross_entropy_loss (Lhs_Expression const &lhs_ex, Rhs_Expression const &rhs_ex) noexcept
 
template<Expression Lhs_Expression, Expression Rhs_Expression>
constexpr auto hinge_loss (Lhs_Expression const &lhs_ex, Rhs_Expression const &rhs_ex) noexcept
 
template<Expression Ex>
void make_trainable (Ex &ex, bool t)
 
template<Expression Ex, Place_Holder Ph, Expression Ey>
auto replace_placeholder_with_expression (Ex const &ex, Ph const &old_place_holder, Ey const &new_expression)
 
template<typename Model , typename Optimizer , typename Loss >
auto make_compiled_model (Model const &m, Loss const &l, Optimizer const &o)
 
template<Expression Ex>
std::string computation_graph (Ex const &ex) noexcept
 
template<Expression Lhs_Expression, Expression Rhs_Expression>
constexpr auto plus (Lhs_Expression const &lhs_ex, Rhs_Expression const &rhs_ex) noexcept
 
template<Expression Lhs_Expression, Expression Rhs_Expression>
constexpr auto operator+ (Lhs_Expression const &lhs_ex, Rhs_Expression const &rhs_ex) noexcept
 
template<Expression Ex>
constexpr auto operator+ (Ex const &ex) noexcept
 
template<Expression Lhs_Expression, Expression Rhs_Expression>
auto operator* (Lhs_Expression const &lhs_ex, Rhs_Expression const &rhs_ex) noexcept
 
template<Expression Ex>
constexpr auto negative (Ex const &ex) noexcept
 
template<Expression Ex>
constexpr auto operator- (Ex const &ex) noexcept
 
template<Expression Lhs_Expression, Expression Rhs_Expression>
constexpr auto elementwise_product (Lhs_Expression const &lhs_ex, Rhs_Expression const &rhs_ex) noexcept
 
template<Expression Lhs_Expression, Expression Rhs_Expression>
constexpr auto elementwise_multiply (Lhs_Expression const &lhs_ex, Rhs_Expression const &rhs_ex) noexcept
 
template<Expression Lhs_Expression, Expression Rhs_Expression>
constexpr auto hadamard_product (Lhs_Expression const &lhs_ex, Rhs_Expression const &rhs_ex) noexcept
 
template<Expression Ex>
constexpr auto sum_reduce (Ex const &ex) noexcept
 
template<Expression Ex>
constexpr auto reduce_sum (Ex const &ex) noexcept
 
template<Expression Ex>
constexpr auto mean_reduce (Ex const &ex) noexcept
 Computes the mean of elements across all dimensions of an expression. More...
 
template<Expression Ex>
constexpr auto reduce_mean (Ex const &ex) noexcept
 An alias name of mean_reduce. More...
 
template<Expression Ex>
constexpr auto mean (Ex const &ex) noexcept
 An alias name of mean_reduce. More...
 
template<Expression Lhs_Expression, Expression Rhs_Expression>
constexpr auto minus (Lhs_Expression const &lhs_ex, Rhs_Expression const &rhs_ex) noexcept
 
template<Expression Lhs_Expression, Expression Rhs_Expression>
constexpr auto operator- (Lhs_Expression const &lhs_ex, Rhs_Expression const &rhs_ex) noexcept
 
template<Expression Ex>
constexpr auto square (Ex const &ex) noexcept
 
template<Place_Holder Ph>
bool operator== (Ph const &lhs, Ph const &rhs)
 
template<Place_Holder Ph>
bool operator!= (Ph const &lhs, Ph const &rhs)
 
template<Place_Holder Ph>
bool operator< (Ph const &lhs, Ph const &rhs)
 
template<Place_Holder Ph>
bool operator> (Ph const &lhs, Ph const &rhs)
 
template<Place_Holder Ph>
bool operator<= (Ph const &lhs, Ph const &rhs)
 
template<Place_Holder Ph>
bool operator>= (Ph const &lhs, Ph const &rhs)
 
template<Tensor Tsor>
ceras_private::session< Tsor > & get_default_session ()
 
template<typename T , typename A = default_allocator<T>>
constexpr tensor< T, A > as_tensor (T val) noexcept
 
template<Tensor Tsor, typename CharT , typename Traits >
std::basic_ostream< CharT, Traits > & operator<< (std::basic_ostream< CharT, Traits > &os_, Tsor const &tsor)
 
template<typename T >
requires std::floating_point< T > void gemm_cpu (T const *A, bool a_transposed, T const *B, bool b_transposed, unsigned long m, unsigned long n, unsigned long k, T *C)
 
void update_cuda_gemm_threshold ()
 
template<typename T >
requires std::floating_point< T > void gemm (T const *A, bool a_transposed, T const *B, bool b_transposed, unsigned long m, unsigned long n, unsigned long k, T *C)
 
template<typename T >
requires std::floating_point< T > void gemm (view_2d< T > const &x, view_2d< T > const &y, view_2d< T > &ans)
 
template<Tensor Tsor>
Tsor add (Tsor const &lhs, Tsor const &rhs) noexcept
 
template<Tensor Tsor>
Tsor operator+ (Tsor const &lhs, Tsor const &rhs) noexcept
 
template<Tensor Tsor>
Tsor operator+ (typename Tsor::value_type const &lhs, Tsor const &rhs) noexcept
 
template<Tensor Tsor>
Tsor operator+ (Tsor const &lhs, typename Tsor::value_type const &rhs) noexcept
 
template<Tensor Tsor>
Tsor minus (Tsor const &lhs, Tsor const &rhs) noexcept
 
template<Tensor Tsor>
Tsor operator- (Tsor const &lhs, Tsor const &rhs) noexcept
 
template<Tensor Tsor>
Tsor operator- (typename Tsor::value_type const &lhs, Tsor const &rhs) noexcept
 
template<Tensor Tsor>
Tsor operator- (Tsor const &lhs, typename Tsor::value_type const &rhs) noexcept
 
template<Tensor Tsor>
Tsor operator* (typename Tsor::value_type const &lhs, Tsor const &rhs) noexcept
 
template<Tensor Tsor>
Tsor operator* (Tsor const &lhs, typename Tsor::value_type const &rhs) noexcept
 
template<Tensor Tsor>
Tsor operator/ (Tsor const &lhs, typename Tsor::value_type const &rhs) noexcept
 
template<Tensor Tsor>
Tsor reshape (Tsor const &ts, std::vector< unsigned long > const &new_shape)
 
template<Tensor Tsor>
void multiply (Tsor const &lhs, Tsor const &rhs, Tsor &ans) noexcept
 
template<Tensor Tsor>
Tsor multiply (Tsor const &lhs, Tsor const &rhs) noexcept
 
template<Tensor Tsor>
Tsor operator* (Tsor const &lhs, Tsor const &rhs) noexcept
 
template<Tensor Tsor>
Tsor elementwise_product (Tsor const &lhs, Tsor const &rhs) noexcept
 
template<Tensor Tsor>
Tsor hadamard_product (Tsor const &lhs, Tsor const &rhs) noexcept
 
template<Tensor Tsor>
Tsor elementwise_divide (Tsor const &lhs, Tsor const &rhs) noexcept
 
template<Tensor Tsor>
Tsor repeat (Tsor const &tsor, unsigned long n)
 
template<Tensor Tsor>
Tsor reduce_sum (Tsor const &tsor)
 
template<Tensor Tsor>
Tsor reduce_mean (Tsor const &tsor)
 
template<Tensor Tsor>
Tsor clip (Tsor &tsor, typename Tsor::value_type lower=0, typename Tsor::value_type upper=1)
 
template<Tensor Tsor>
Tsor squeeze (Tsor const &tsor)
 
template<typename T , typename A = default_allocator<T>>
tensor< T, A > randn (std::vector< unsigned long > const &shape, T mean=T{0}, T stddev=T{1})
 
template<typename T , typename A = default_allocator<T>>
tensor< T, A > truncated_normal (std::vector< unsigned long > const &shape, T mean=T{0}, T stddev=T{1}, T lower=T{0}, T upper=T{1})
 
template<typename T , typename A = default_allocator<T>>
tensor< T, A > random (std::vector< unsigned long > const &shape, T min=T{0}, T max=T{1})
 
template<Tensor Tsor>
Tsor random_like (Tsor const &tsor, typename Tsor::value_type min=0, typename Tsor::value_type max=1)
 
template<Tensor Tsor>
Tsor randn_like (Tsor const &tsor, typename Tsor::value_type mean=0, typename Tsor::value_type stddev=1)
 
template<typename T , typename A = default_allocator<T>>
tensor< T, A > glorot_uniform (std::initializer_list< unsigned long > shape)
 
template<Tensor Tsor>
Tsor deep_copy (Tsor const &tsor)
 
template<Tensor Tsor>
Tsor copy (Tsor const &tsor)
 
template<Tensor Tsor>
Tsor concatenate (Tsor const &lhs, Tsor const &rhs, unsigned long axis=0) noexcept
 
template<Tensor Tsor>
Tsor repmat (Tsor const &tsor, unsigned long row_rep, unsigned long col_rep)
 
template<Tensor Tsor>
constexpr bool empty (Tsor const &tsor) noexcept
 
template<typename T , typename A = default_allocator<T>>
constexpr tensor< T, A > zeros (std::vector< unsigned long > const &shape)
 
template<Tensor Tsor>
constexpr Tsor zeros_like (Tsor const &tsor)
 
template<typename T , typename A = default_allocator<T>>
constexpr tensor< T, A > ones (std::vector< unsigned long > const &shape)
 
template<Tensor Tsor>
constexpr Tsor ones_like (Tsor const &tsor)
 
template<Tensor Tsor>
auto max (Tsor const &tsor)
 
template<Tensor Tsor>
auto amax (Tsor const &tsor)
 
template<Tensor Tsor>
auto min (Tsor const &tsor)
 
template<Tensor Tsor>
auto amin (Tsor const &tsor)
 
template<Tensor Tsor>
auto sum (Tsor const &tsor)
 
template<Tensor Tsor>
auto mean (Tsor const &tsor)
 
template<Tensor Tsor>
auto norm (Tsor const &tsor)
 
template<Tensor Tsor>
Tsor abs (Tsor const &tsor)
 
template<Tensor Tsor>
Tsor softmax (Tsor const &tsor)
 
template<Tensor Tsor>
bool has_nan (Tsor const &tsor)
 
template<Tensor Tsor>
bool has_inf (Tsor const &tsor)
 
template<Tensor Tsor>
bool is_valid (Tsor const &tsor)
 
template<Tensor Tsor, typename Function >
Tsor reduce (Tsor const &ts, unsigned long axis, typename Tsor::value_type const &init, Function const &func, bool keepdims=false) noexcept
 
template<Tensor Tsor>
Tsor sum (Tsor const &ts, unsigned long axis, bool keepdims=false) noexcept
 
template<Tensor Tsor>
requires std::floating_point< typename Tsor::value_type > Tsor mean (Tsor const &ts, unsigned long axis, bool keepdims=false) noexcept
 
template<Tensor Tsor>
requires std::floating_point< typename Tsor::value_type > Tsor variance (Tsor const &ts, unsigned long axis, bool keepdims=false) noexcept
 
template<Tensor Tsor>
requires std::floating_point< typename Tsor::value_type > Tsor standard_deviation (Tsor const &ts, unsigned long axis, bool keepdims=false) noexcept
 
template<Tensor Tsor>
requires std::floating_point< typename Tsor::value_type > Tsor::value_type var (Tsor const &ts) noexcept
 
template<Tensor Tsor>
requires std::floating_point< typename Tsor::value_type > Tsor::value_type std (Tsor const &ts) noexcept
 
template<Tensor Tsor>
Tsor max (Tsor const &ts, unsigned long axis, bool keepdims=false) noexcept
 
template<Tensor Tsor>
Tsor min (Tsor const &ts, unsigned long axis, bool keepdims=false) noexcept
 
template<typename T , typename A = default_allocator<T>>
requires std::floating_point< T > tensor< T, A > linspace (T start, T stop, unsigned long num, bool endpoint=true) noexcept
 
template<class _Tp , class _CharT , class _Traits , class _Alloc >
std::basic_istream< _CharT, _Traits > & read_tensor (std::basic_istream< _CharT, _Traits > &__is, tensor< _Tp, _Alloc > &__x)
 
template<class _Tp , class _CharT , class _Traits , class _Alloc >
std::basic_ostream< _CharT, _Traits > & write_tensor (std::basic_ostream< _CharT, _Traits > &__os, tensor< _Tp, _Alloc > const &__x)
 
template<typename T , typename A = default_allocator<T>>
tensor< T, A > load_tensor (std::string const &file_name)
 
template<Tensor Tsor>
void save_tensor (std::string const &file_name, Tsor const &tsor)
 
template<Variable Var>
bool operator== (Var const &lhs, Var const &rhs) noexcept
 

Variables

template<typename T >
constexpr bool is_complex_v = is_complex<T>::value
 
template<typename T >
concept Complex = is_complex_v<T>
 A type that represents a complex expression. More...
 
template<class T >
constexpr bool is_constant_v = is_constant<T>::value
 
template<typename T >
concept Constant = is_constant_v<T>
 
auto MeanSquaredError
 Computes the mean of squares of errors between labels and predictions. More...
 
auto MSE
 An alias name of function MeanSquaredError. More...
 
auto MeanAbsoluteError
 Computes the mean of absolute errors between labels and predictions. More...
 
auto MAE
 An alias name of function MeanAbsoluteError. More...
 
auto Hinge
 
auto CategoricalCrossentropy
 
auto CategoricalCrossEntropy
 
auto BinaryCrossentropy
 
auto BinaryCrossEntropy
 
static constexpr auto make_unary_operator
 
static constexpr auto make_binary_operator
 
template<class T >
constexpr bool is_unary_operator_v = is_unary_operator<T>::value
 
template<typename T >
concept Unary_Operator = is_unary_operator_v<T>
 A type that represents an unary operator. More...
 
template<class T >
constexpr bool is_binary_operator_v = is_binary_operator<T>::value
 
template<typename T >
concept Binary_Operator = is_binary_operator_v<T>
 A type that represents a binary operator. More...
 
template<typename T >
concept Operator = Unary_Operator<T> || Binary_Operator<T>
 A type that represents an unary or a binary operator. More...
 
template<typename T >
concept Expression = Operator<T> || Variable<T> || Place_Holder<T> || Constant<T> || Value<T>
 A type that represents a unary operator, a binary operator, a variable, a place_holder, a constant or a value. More...
 
auto Adam
 
auto SGD
 
auto Adagrad
 
auto RMSprop
 
auto Adadelta
 
template<class T >
constexpr bool is_place_holder_v = is_place_holder<T>::value
 
template<typename T >
concept Place_Holder = is_place_holder_v<T>
 
static unsigned long random_seed = std::chrono::system_clock::now().time_since_epoch().count()
 
static std::mt19937 random_generator {random_seed}
 
template<class T >
constexpr bool is_tensor_v = is_tensor<T>::value
 
template<typename T >
concept Tensor = is_tensor_v<T>
 
template<class T >
constexpr bool is_value_v = is_value<T>::value
 
template<typename T >
concept Value = is_value_v<T>
 
template<class T >
constexpr bool is_variable_v = is_variable<T>::value
 
template<typename T >
concept Variable = is_variable_v<T>
 

Typedef Documentation

◆ ada_delta

template<typename Loss , typename T >
using ceras::ada_delta = typedef adadelta< Loss, T >

◆ ada_grad

template<typename Loss , typename T >
using ceras::ada_grad = typedef adagrad<Loss, T>

◆ array

template<typename T >
using ceras::array = typedef view_1d<T>

◆ cube

template<typename T >
using ceras::cube = typedef view_3d<T>

◆ default_allocator

template<typename T >
using ceras::default_allocator = typedef std::allocator<T>

◆ matrix

template<typename T >
using ceras::matrix = typedef view_2d<T>

◆ rms_prop

template<typename Loss , typename T >
using ceras::rms_prop = typedef rmsprop< Loss, T >

◆ tesseract

template<typename T >
using ceras::tesseract = typedef view_4d<T>

Function Documentation

◆ abs() [1/2]

template<Complex C>
auto ceras::abs ( C const &  c)
noexcept

Returns the magnitude of the complex expression.

Parameters
cComplex expression.
auto r = variable{ ... };
auto i = variable{ ... };
auto c = complex{ r, i };
auto a = abs( c );
auto abs(C const &c) noexcept
Returns the magnitude of the complex expression.
Definition: complex_operator.hpp:67

◆ abs() [2/2]

template<Tensor Tsor>
Tsor ceras::abs ( Tsor const &  tsor)

◆ abs_loss()

template<Expression Lhs_Expression, Expression Rhs_Expression>
constexpr auto ceras::abs_loss ( Lhs_Expression const &  lhs_ex,
Rhs_Expression const &  rhs_ex 
)
constexprnoexcept

◆ Add()

auto ceras::Add ( )
inlinenoexcept

Layer that adds two layers

Example usage:

auto input = Input(); // (16, )
auto x1 = Dense( 8, 16 )( input );
auto x2 = Dense( 8, 16 )( input );
auto x3 = Add()( x1, x2 ); // equivalent to `x1 + x2`
auto m = model{ input, x3 };
auto Add() noexcept
Definition: layer.hpp:178
auto Dense(unsigned long output_size, unsigned long input_size, bool use_bias=true, float kernel_regularizer_l1=0.0f, float kernel_regularizer_l2=0.0f, float bias_regularizer_l1=0.0f, float bias_regularizer_l2=0.0f)
Densly-connected layer.
Definition: layer.hpp:92
auto Input()
Definition: layer.hpp:15

◆ add()

template<Tensor Tsor>
Tsor ceras::add ( Tsor const &  lhs,
Tsor const &  rhs 
)
noexcept

◆ amax()

template<Tensor Tsor>
auto ceras::amax ( Tsor const &  tsor)

◆ amin()

template<Tensor Tsor>
auto ceras::amin ( Tsor const &  tsor)

◆ arg()

template<Complex C>
auto ceras::arg ( C const &  c)
noexcept

Calculates the phase angle (in radians) of the complex expression.

Parameters
cComplex expression. Implemented as atan2( imagec), real(c) ).
auto r = variable{ ... };
auto i = variable{ ... };
auto c = complex{ r, i };
auto a = arg( c );
auto arg(C const &c) noexcept
Calculates the phase angle (in radians) of the complex expression.
Definition: complex_operator.hpp:144

◆ as_tensor()

template<typename T , typename A = default_allocator<T>>
constexpr tensor<T, A> ceras::as_tensor ( val)
constexprnoexcept

◆ AveragePooling2D()

auto ceras::AveragePooling2D ( unsigned long  stride)
inlinenoexcept

Average pooling operation for spatial data.

◆ BatchNormalization() [1/2]

auto ceras::BatchNormalization ( float  threshold,
std::vector< unsigned long > const &  shape,
float  kernel_regularizer_l1 = 0.0f,
float  kernel_regularizer_l2 = 0.0f,
float  bias_regularizer_l1 = 0.0f,
float  bias_regularizer_l2 = 0.0f 
)
inline

◆ BatchNormalization() [2/2]

auto ceras::BatchNormalization ( std::vector< unsigned long > const &  shape,
float  threshold = 0.95f,
float  kernel_regularizer_l1 = 0.0f,
float  kernel_regularizer_l2 = 0.0f,
float  bias_regularizer_l1 = 0.0f,
float  bias_regularizer_l2 = 0.0f 
)
inline

Applies a transformation that maintains the mean output close to 0 and the output standard deviation close to 1.

Parameters
shapeDimensionality of the input shape.
thresholdMomentum for the moving average.
kernel_regularizer_l1L1 regularizer for the kernel. Defaults to 0.0f.
kernel_regularizer_l2L2 regularizer for the kernel. Defaults to 0.0f.
bias_regularizer_l1L1 regularizer for the bias vector. Defaults to 0.0f.
bias_regularizer_l2L2 regularizer for the bias vector. Defaults to 0.0f.

Example code:

auto a = variable{ random<float>( {12, 34, 56, 78} ) };
auto b = BatchNormalization( {34, 56, 78}, 0.8f )( a ); // note the leading dimension of `a` is intepretated as batch size, and only the rest 3 dimensions are required here.
auto BatchNormalization(std::vector< unsigned long > const &shape, float threshold=0.95f, float kernel_regularizer_l1=0.0f, float kernel_regularizer_l2=0.0f, float bias_regularizer_l1=0.0f, float bias_regularizer_l2=0.0f)
Applies a transformation that maintains the mean output close to 0 and the output standard deviation ...
Definition: layer.hpp:117

◆ binary_cross_entropy_loss()

template<Expression Lhs_Expression, Expression Rhs_Expression>
constexpr auto ceras::binary_cross_entropy_loss ( Lhs_Expression const &  ground_truth,
Rhs_Expression const &  prediction 
)
constexprnoexcept

◆ clip()

template<Tensor Tsor>
Tsor ceras::clip ( Tsor &  tsor,
typename Tsor::value_type  lower = 0,
typename Tsor::value_type  upper = 1 
)

◆ computation_graph()

template<Expression Ex>
std::string ceras::computation_graph ( Ex const &  ex)
inlinenoexcept

Generating the computation graph, in graph description language.

Parameters
exAn expression.
Returns
A string describing the computation graph, in graph description language.

◆ concatenate()

template<Tensor Tsor>
Tsor ceras::concatenate ( Tsor const &  lhs,
Tsor const &  rhs,
unsigned long  axis = 0 
)
noexcept

◆ Concatenate()

auto ceras::Concatenate ( unsigned long  axis = -1)
inlinenoexcept

Layer that concatenates two layers.

Parameters
axisThe concatenation axis. Default to the last channel.

Example usage:

auto l1 = variable{ tensor<float>{ {12, 11, 3} } };
auto l2 = variable{ tensor<float>{ {12, 11, 4} } };
auto l12 = Concatenate()( l1, l2 ); // should be of shape (12, 11, 7)
auto Concatenate(unsigned long axis=-1) noexcept
Definition: layer.hpp:158

◆ conj()

template<Complex C>
auto ceras::conj ( C const &  c)
noexcept

Returns the conjugate of the complex expression.

Parameters
cComplex expression.
auto r = variable{ ... };
auto i = variable{ ... };
auto c = complex{ r, i };
auto a = conj( c );
auto conj(C const &c) noexcept
Returns the conjugate of the complex expression.
Definition: complex_operator.hpp:105

◆ Conv2D()

auto ceras::Conv2D ( unsigned long  output_channels,
std::vector< unsigned long > const &  kernel_size,
std::vector< unsigned long > const &  input_shape,
std::string const &  padding = "valid",
std::vector< unsigned long > const &  strides = {1,1},
std::vector< unsigned long > const &  dilations = {1, 1},
bool  use_bias = true,
float  kernel_regularizer_l1 = 0.0f,
float  kernel_regularizer_l2 = 0.0f,
float  bias_regularizer_l1 = 0.0f,
float  bias_regularizer_l2 = 0.0f 
)
inline

2D convolution layer.

Parameters
output_channelsDimensionality of the output space.
kernel_sizeThe height and width of the convolutional window.
input_shapeDimensionality of the input shape.
paddingvalid or same. valid suggests no padding. same suggests zero padding. Defaults to valid.
stridesThe strides along the height and width direction. Defaults to (1, 1).
dilationsThe dialation along the height and width direction. Defaults to (1, 1).
use_biasWether or not use a bias vector. Defaults to true.
kernel_regularizer_l1L1 regularizer for the kernel. Defaults to 0.0f.
kernel_regularizer_l2L2 regularizer for the kernel. Defaults to 0.0f.
bias_regularizer_l1L1 regularizer for the bias vector. Defaults to 0.0f.
bias_regularizer_l2L2 regularizer for the bias vector. Defaults to 0.0f.

Example code:

auto x = Input{};
auto y = Conv2D( 32, {3, 3}, {28, 28, 1}, "same" )( x );
auto z = Flatten()( y );
auto u = Dense( 10, 28*28*32 )( z );
auto m = model{ x, u };
auto Flatten() noexcept
Definition: layer.hpp:278
auto Conv2D(unsigned long output_channels, std::vector< unsigned long > const &kernel_size, std::vector< unsigned long > const &input_shape, std::string const &padding="valid", std::vector< unsigned long > const &strides={1, 1}, std::vector< unsigned long > const &dilations={1, 1}, bool use_bias=true, float kernel_regularizer_l1=0.0f, float kernel_regularizer_l2=0.0f, float bias_regularizer_l1=0.0f, float bias_regularizer_l2=0.0f)
2D convolution layer.
Definition: layer.hpp:44
*auto y
Definition: operation.hpp:627

◆ copy()

template<Tensor Tsor>
Tsor ceras::copy ( Tsor const &  tsor)

◆ crelu()

template<Expression Ex>
auto ceras::crelu ( Ex const &  ex)
noexcept

Concatenated Rectified Linear Units, an activation function which preserves both positive and negative phase information while enforcing non-saturated non-linearity.

Reference: Shang, Wenling, Kihyuk Sohn, Diogo Almeida, and Honglak Lee. “Understanding and Improving Convolutional Neural Networks via Concatenated Rectified Linear Units.” ArXiv:1603.05201 [Cs], July 19, 2016. http://arxiv.org/abs/1603.05201.

auto v = variable{ random<float>{ 3, 3 } };
auto c = crelu( v );
auto crelu(Ex const &ex) noexcept
Concatenated Rectified Linear Units, an activation function which preserves both positive and negativ...
Definition: activation.hpp:565

◆ cross_entropy()

template<Expression Lhs_Expression, Expression Rhs_Expression>
constexpr auto ceras::cross_entropy ( Lhs_Expression const &  lhs_ex,
Rhs_Expression const &  rhs_ex 
)
constexprnoexcept

◆ cross_entropy_loss()

template<Expression Lhs_Expression, Expression Rhs_Expression>
constexpr auto ceras::cross_entropy_loss ( Lhs_Expression const &  lhs_ex,
Rhs_Expression const &  rhs_ex 
)
constexprnoexcept

◆ deep_copy()

template<Tensor Tsor>
Tsor ceras::deep_copy ( Tsor const &  tsor)

◆ Dense()

auto ceras::Dense ( unsigned long  output_size,
unsigned long  input_size,
bool  use_bias = true,
float  kernel_regularizer_l1 = 0.0f,
float  kernel_regularizer_l2 = 0.0f,
float  bias_regularizer_l1 = 0.0f,
float  bias_regularizer_l2 = 0.0f 
)
inline

Densly-connected layer.

Parameters
output_sizeDimensionality of output shape. The output shape is (batch_size, output_size).
input_sizeDimensionality of input shape. The input shape is (batch_size, input_size).
use_biasUsing a bias vector or not. Defaults to true.
kernel_regularizer_l1L1 regularizer for the kernel. Defaults to 0.0f.
kernel_regularizer_l2L2 regularizer for the kernel. Defaults to 0.0f.
bias_regularizer_l1L1 regularizer for the bias vector. Defaults to 0.0f.
bias_regularizer_l2L2 regularizer for the bias vector. Defaults to 0.0f.

Example code:

auto x = Input{};
auto y = Dense( 10, 28*28 )( x );
auto m = model{ x, y };

◆ Dropout()

template<typename T >
auto ceras::Dropout ( factor)
inlinenoexcept

Applies Dropout to the input.

◆ elementwise_divide()

template<Tensor Tsor>
Tsor ceras::elementwise_divide ( Tsor const &  lhs,
Tsor const &  rhs 
)
noexcept

◆ elementwise_multiply()

template<Expression Lhs_Expression, Expression Rhs_Expression>
constexpr auto ceras::elementwise_multiply ( Lhs_Expression const &  lhs_ex,
Rhs_Expression const &  rhs_ex 
)
constexprnoexcept

◆ elementwise_product() [1/2]

template<Expression Lhs_Expression, Expression Rhs_Expression>
constexpr auto ceras::elementwise_product ( Lhs_Expression const &  lhs_ex,
Rhs_Expression const &  rhs_ex 
)
constexprnoexcept

◆ elementwise_product() [2/2]

template<Tensor Tsor>
Tsor ceras::elementwise_product ( Tsor const &  lhs,
Tsor const &  rhs 
)
noexcept

◆ elu()

template<typename T = float>
requires std::floating_point<T> auto ceras::elu ( T const  alpha = 1.0)
noexcept

Exponential Linear function, an unary operator. Returns x if positive, alpha* (exp(x)-1) otherwise. alpha defaults to 0.2.

Parameters
exAn input operator.
auto x = Input();
auto y = Dense( 10, 28*28 )( x );
auto output = elu(0.1f)( y );
requires std::floating_point< T > auto elu(T const alpha=1.0) noexcept
Exponential Linear function, an unary operator. Returns x if positive, alpha* (exp(x)-1) otherwise....
Definition: activation.hpp:376

◆ ELU()

template<typename T = float>
auto ceras::ELU ( T const  factor = 0.2)
inlinenoexcept

Exponential Linear Unit.

◆ empty()

template<Tensor Tsor>
constexpr bool ceras::empty ( Tsor const &  tsor)
constexprnoexcept

◆ exponential()

template<Expression Ex>
auto ceras::exponential ( Ex const &  ex)
inlinenoexcept

Exponential function, an unary operator. Returns exp(x).

Parameters
exAn input operator.
auto x = Input();
auto y = Dense( 10, 28*28 )( x );
auto output = exponential( y );
auto exponential(Ex const &ex) noexcept
Exponential function, an unary operator. Returns exp(x).
Definition: activation.hpp:413

◆ Flatten()

auto ceras::Flatten ( )
inlinenoexcept

Flattens the input. Does not affect the batch size.

◆ gelu()

template<Expression Ex>
auto ceras::gelu ( Ex const &  ex)
inlinenoexcept

Gaussian Error function, an unary operator. GAUSSIAN ERROR LINEAR UNITS (GELUS) https://arxiv.org/pdf/1606.08415.pdf $f(x) = 0.5x (1 + tanh[\sqrt{2/\pi}(x + 0.044715x^3)])$ $df = x ( 1 + tanh[\sqrt{2/\pi}(x + 0.044715x^3)] ) + \sqrt(2/\pi) x sech^2[\sqrt(2/\pi) x (1+0.44715x^2) (1+0.134145x^2) ]$ where $sec^2(x) = 1 - tanh^2(x)$ derivative generated using service from https://www.symbolab.com/solver/derivative-calculator.

Parameters
exAn input operator.
auto x = Input();
auto y = Dense( 10, 28*28 )( x );
auto output = gelu( y );
auto gelu(Ex const &ex) noexcept
Gaussian Error function, an unary operator. GAUSSIAN ERROR LINEAR UNITS (GELUS) https://arxiv....
Definition: activation.hpp:490

◆ gemm() [1/2]

template<typename T >
requires std::floating_point<T> void ceras::gemm ( T const *  A,
bool  a_transposed,
T const *  B,
bool  b_transposed,
unsigned long  m,
unsigned long  n,
unsigned long  k,
T *  C 
)

◆ gemm() [2/2]

template<typename T >
requires std::floating_point<T> void ceras::gemm ( view_2d< T > const &  x,
view_2d< T > const &  y,
view_2d< T > &  ans 
)

◆ gemm_cpu()

template<typename T >
requires std::floating_point<T> void ceras::gemm_cpu ( T const *  A,
bool  a_transposed,
T const *  B,
bool  b_transposed,
unsigned long  m,
unsigned long  n,
unsigned long  k,
T *  C 
)

◆ get_default_session()

template<Tensor Tsor>
ceras_private::session< Tsor > & ceras::get_default_session ( )

◆ glorot_uniform()

template<typename T , typename A = default_allocator<T>>
tensor<T,A> ceras::glorot_uniform ( std::initializer_list< unsigned long >  shape)

◆ hadamard_product() [1/2]

template<Expression Lhs_Expression, Expression Rhs_Expression>
constexpr auto ceras::hadamard_product ( Lhs_Expression const &  lhs_ex,
Rhs_Expression const &  rhs_ex 
)
constexprnoexcept

◆ hadamard_product() [2/2]

template<Tensor Tsor>
Tsor ceras::hadamard_product ( Tsor const &  lhs,
Tsor const &  rhs 
)
noexcept

◆ hard_sigmoid()

template<Expression Ex>
auto ceras::hard_sigmoid ( Ex const &  ex)
inlinenoexcept

Hard Sigmoid function, an unary operator. Piecewise linear approximation of the sigmoid function.

Parameters
exAn input operator.
auto x = Input();
auto y = Dense( 10, 28*28 )( x );
auto output = hard_sigmoid( y );
auto hard_sigmoid(Ex const &ex) noexcept
Hard Sigmoid function, an unary operator. Piecewise linear approximation of the sigmoid function.
Definition: activation.hpp:449

◆ has_inf()

template<Tensor Tsor>
bool ceras::has_inf ( Tsor const &  tsor)

◆ has_nan()

template<Tensor Tsor>
bool ceras::has_nan ( Tsor const &  tsor)

◆ hinge_loss()

template<Expression Lhs_Expression, Expression Rhs_Expression>
constexpr auto ceras::hinge_loss ( Lhs_Expression const &  lhs_ex,
Rhs_Expression const &  rhs_ex 
)
constexprnoexcept

◆ imag()

template<Expression Real_Ex, Expression Imag_Ex>
Imag_Ex ceras::imag ( complex< Real_Ex, Imag_Ex > const &  c)
noexcept

@bref Returns the imaginary part of the complex expression.

Parameters
cA complex expression.

◆ Input()

auto ceras::Input ( )
inline

◆ is_valid()

template<Tensor Tsor>
bool ceras::is_valid ( Tsor const &  tsor)

◆ leaky_relu()

template<typename T >
requires std::floating_point<T> auto ceras::leaky_relu ( T const  factor = 0.2)
noexcept

Leaky Rectified Linear function, an unary operator. Returns x if positive, alpha x otherwise. alpha defaults to 0.2.

Parameters
exAn input operator.
auto x = Input();
auto y = Dense( 10, 28*28 )( x );
auto output = leaky_relu(0.1f)( y );
requires std::floating_point< T > auto leaky_relu(T const factor=0.2) noexcept
Leaky Rectified Linear function, an unary operator. Returns x if positive, alpha x otherwise....
Definition: activation.hpp:331

◆ LeakyReLU()

template<typename T = float>
auto ceras::LeakyReLU ( T const  factor = 0.2)
inlinenoexcept

leaky relu activation function.

◆ linspace()

template<typename T , typename A = default_allocator<T>>
requires std::floating_point<T> tensor<T,A> ceras::linspace ( start,
stop,
unsigned long  num,
bool  endpoint = true 
)
noexcept

◆ lisht()

template<Expression Ex>
auto ceras::lisht ( Ex const &  ex)
noexcept

Lisht function.

auto v = variable{ random<float>{ 3, 3 } };
auto c = lisht( v );
auto lisht(Ex const &ex) noexcept
Lisht function.
Definition: activation.hpp:609

◆ load_tensor()

template<typename T , typename A = default_allocator<T>>
tensor<T,A> ceras::load_tensor ( std::string const &  file_name)

◆ mae()

template<Expression Lhs_Expression, Expression Rhs_Expression>
constexpr auto ceras::mae ( Lhs_Expression const &  lhs_ex,
Rhs_Expression const &  rhs_ex 
)
constexprnoexcept

◆ make_compiled_model()

template<typename Model , typename Optimizer , typename Loss >
auto ceras::make_compiled_model ( Model const &  m,
Loss const &  l,
Optimizer const &  o 
)
inline

◆ make_trainable()

template<Expression Ex>
void ceras::make_trainable ( Ex &  ex,
bool  t 
)

Setting an expression's trainable flag

◆ max() [1/2]

template<Tensor Tsor>
Tsor ceras::max ( Tsor const &  ts,
unsigned long  axis,
bool  keepdims = false 
)
noexcept

◆ max() [2/2]

template<Tensor Tsor>
auto ceras::max ( Tsor const &  tsor)

◆ MaxPooling2D()

auto ceras::MaxPooling2D ( unsigned long  stride)
inlinenoexcept

Max pooling operation for 2D spatial data.

◆ mean() [1/3]

template<Expression Ex>
constexpr auto ceras::mean ( Ex const &  ex)
constexprnoexcept

An alias name of mean_reduce.

◆ mean() [2/3]

template<Tensor Tsor>
requires std::floating_point<typename Tsor::value_type> Tsor ceras::mean ( Tsor const &  ts,
unsigned long  axis,
bool  keepdims = false 
)
noexcept

◆ mean() [3/3]

template<Tensor Tsor>
auto ceras::mean ( Tsor const &  tsor)

◆ mean_absolute_error()

template<Expression Lhs_Expression, Expression Rhs_Expression>
constexpr auto ceras::mean_absolute_error ( Lhs_Expression const &  lhs_ex,
Rhs_Expression const &  rhs_ex 
)
constexprnoexcept

◆ mean_reduce()

template<Expression Ex>
constexpr auto ceras::mean_reduce ( Ex const &  ex)
constexprnoexcept

Computes the mean of elements across all dimensions of an expression.

Parameters
exIncoming expression.

Example code:

auto va = place_holder<tensor<float>>{};
auto vb = variable{ random<float>{ 3, 4} };
auto diff = mean_reduce( va, vb );
constexpr auto mean_reduce(Ex const &ex) noexcept
Computes the mean of elements across all dimensions of an expression.
Definition: operation.hpp:488

◆ mean_squared_error()

template<Expression Lhs_Expression, Expression Rhs_Expression>
constexpr auto ceras::mean_squared_error ( Lhs_Expression const &  lhs_ex,
Rhs_Expression const &  rhs_ex 
)
constexprnoexcept

◆ mean_squared_logarithmic_error()

template<Expression Lhs_Expression, Expression Rhs_Expression>
constexpr auto ceras::mean_squared_logarithmic_error ( Lhs_Expression const &  lhs_ex,
Rhs_Expression const &  rhs_ex 
)
constexprnoexcept

◆ min() [1/2]

template<Tensor Tsor>
Tsor ceras::min ( Tsor const &  ts,
unsigned long  axis,
bool  keepdims = false 
)
noexcept

◆ min() [2/2]

template<Tensor Tsor>
auto ceras::min ( Tsor const &  tsor)

◆ minus() [1/2]

template<Expression Lhs_Expression, Expression Rhs_Expression>
constexpr auto ceras::minus ( Lhs_Expression const &  lhs_ex,
Rhs_Expression const &  rhs_ex 
)
constexprnoexcept

◆ minus() [2/2]

template<Tensor Tsor>
Tsor ceras::minus ( Tsor const &  lhs,
Tsor const &  rhs 
)
noexcept

◆ mish()

template<Expression Ex>
auto ceras::mish ( Ex const &  ex)
noexcept

Mish function.

auto v = variable{ random<float>{ 3, 3 } };
auto c = mish( v );
auto mish(Ex const &ex) noexcept
Mish function.
Definition: activation.hpp:594

◆ mse()

template<Expression Lhs_Expression, Expression Rhs_Expression>
constexpr auto ceras::mse ( Lhs_Expression const &  lhs_ex,
Rhs_Expression const &  rhs_ex 
)
constexprnoexcept

◆ Multiply()

auto ceras::Multiply ( )
inlinenoexcept

Layer that elementwise multiplies two layers

Example usage:

auto input = Input(); // (16, )
auto x1 = Dense( 8, 16 )( input );
auto x2 = Dense( 8, 16 )( input );
auto x3 = Multiply()( x1, x2 ); // equivalent to `elementwise_multiply(x1, x2)`
auto m = model{ input, x3 };
auto Multiply() noexcept
Definition: layer.hpp:219

◆ multiply() [1/2]

template<Tensor Tsor>
Tsor ceras::multiply ( Tsor const &  lhs,
Tsor const &  rhs 
)
noexcept

◆ multiply() [2/2]

template<Tensor Tsor>
void ceras::multiply ( Tsor const &  lhs,
Tsor const &  rhs,
Tsor &  ans 
)
noexcept

◆ negative()

template<Expression Ex>
constexpr auto ceras::negative ( Ex const &  ex)
constexprnoexcept

◆ negative_relu()

template<Expression Ex>
auto ceras::negative_relu ( Ex const &  ex)
noexcept

◆ norm() [1/2]

template<Complex C>
auto ceras::norm ( C const &  c)
noexcept

Returns the squared magnitude of the complex expression.

Parameters
cComplex expression.
auto r = variable{ ... };
auto i = variable{ ... };
auto c = complex{ r, i };
auto a = norm( c );
auto norm(C const &c) noexcept
Returns the squared magnitude of the complex expression.
Definition: complex_operator.hpp:85

◆ norm() [2/2]

template<Tensor Tsor>
auto ceras::norm ( Tsor const &  tsor)

◆ ones()

template<typename T , typename A = default_allocator<T>>
constexpr tensor<T,A> ceras::ones ( std::vector< unsigned long > const &  shape)
constexpr

◆ ones_like()

template<Tensor Tsor>
constexpr Tsor ceras::ones_like ( Tsor const &  tsor)
constexpr

◆ operator!=()

template<Place_Holder Ph>
bool ceras::operator!= ( Ph const &  lhs,
Ph const &  rhs 
)

◆ operator*() [1/7]

template<Complex C, Expression E>
auto ceras::operator* ( C const &  c,
E const &  e 
)
noexcept

Multiplies a complex expression with an expression.

◆ operator*() [2/7]

template<Complex Cl, Complex Cr>
auto ceras::operator* ( Cl const &  cl,
Cr const &  cr 
)
noexcept

Multiplies two complex expressions. Optimization here: (a+ib)*(c+id) = (ac-bd) + i(ad+bc) = (ac-bd) + i( (a+b)*(c+d)-ac-bd )

auto c1 = complex{ ..., ... };
auto c2 = complex{ ..., ... };
auto c12 = c1 * c2;

◆ operator*() [3/7]

template<Complex C, Expression E>
auto ceras::operator* ( E const &  e,
C const &  c 
)
noexcept

Multiplies an expression with a compression expression.

◆ operator*() [4/7]

template<Expression Lhs_Expression, Expression Rhs_Expression>
auto ceras::operator* ( Lhs_Expression const &  lhs_ex,
Rhs_Expression const &  rhs_ex 
)
noexcept

◆ operator*() [5/7]

template<Tensor Tsor>
Tsor ceras::operator* ( Tsor const &  lhs,
Tsor const &  rhs 
)
noexcept

◆ operator*() [6/7]

template<Tensor Tsor>
Tsor ceras::operator* ( Tsor const &  lhs,
typename Tsor::value_type const &  rhs 
)
noexcept

◆ operator*() [7/7]

template<Tensor Tsor>
Tsor ceras::operator* ( typename Tsor::value_type const &  lhs,
Tsor const &  rhs 
)
noexcept

◆ operator+() [1/9]

template<Complex C>
auto ceras::operator+ ( C const &  c)
noexcept

Returns the complex expression.

◆ operator+() [2/9]

template<Complex C, Expression E>
auto ceras::operator+ ( C const &  c,
E const &  e 
)
noexcept

Sums up a complex expression and an expression.

◆ operator+() [3/9]

template<Complex Cl, Complex Cr>
auto ceras::operator+ ( Cl const &  cl,
Cr const &  cr 
)
noexcept

Sums up two complex expressions.

◆ operator+() [4/9]

template<Complex C, Expression E>
auto ceras::operator+ ( E const &  e,
C const &  c 
)
noexcept

Sums up a complex expression and an expression.

◆ operator+() [5/9]

template<Expression Ex>
constexpr auto ceras::operator+ ( Ex const &  ex)
constexprnoexcept

◆ operator+() [6/9]

template<Expression Lhs_Expression, Expression Rhs_Expression>
constexpr auto ceras::operator+ ( Lhs_Expression const &  lhs_ex,
Rhs_Expression const &  rhs_ex 
)
constexprnoexcept

◆ operator+() [7/9]

template<Tensor Tsor>
Tsor ceras::operator+ ( Tsor const &  lhs,
Tsor const &  rhs 
)
noexcept

◆ operator+() [8/9]

template<Tensor Tsor>
Tsor ceras::operator+ ( Tsor const &  lhs,
typename Tsor::value_type const &  rhs 
)
noexcept

◆ operator+() [9/9]

template<Tensor Tsor>
Tsor ceras::operator+ ( typename Tsor::value_type const &  lhs,
Tsor const &  rhs 
)
noexcept

◆ operator-() [1/9]

template<Complex C>
auto ceras::operator- ( C const &  c)
noexcept

Negatives the complex expression.

◆ operator-() [2/9]

template<Complex C, Expression E>
auto ceras::operator- ( C const &  c,
E const &  e 
)
noexcept

Subtracts an expression from a compression expression.

◆ operator-() [3/9]

template<Complex Cl, Complex Cr>
auto ceras::operator- ( Cl const &  cl,
Cr const &  cr 
)
noexcept

Subtracts one complex expression from the other one.

◆ operator-() [4/9]

template<Complex C, Expression E>
auto ceras::operator- ( E const &  e,
C const &  c 
)
noexcept

Subtractsa complex expression from an expression.

◆ operator-() [5/9]

template<Expression Ex>
constexpr auto ceras::operator- ( Ex const &  ex)
constexprnoexcept

◆ operator-() [6/9]

template<Expression Lhs_Expression, Expression Rhs_Expression>
constexpr auto ceras::operator- ( Lhs_Expression const &  lhs_ex,
Rhs_Expression const &  rhs_ex 
)
constexprnoexcept

◆ operator-() [7/9]

template<Tensor Tsor>
Tsor ceras::operator- ( Tsor const &  lhs,
Tsor const &  rhs 
)
noexcept

◆ operator-() [8/9]

template<Tensor Tsor>
Tsor ceras::operator- ( Tsor const &  lhs,
typename Tsor::value_type const &  rhs 
)
noexcept

◆ operator-() [9/9]

template<Tensor Tsor>
Tsor ceras::operator- ( typename Tsor::value_type const &  lhs,
Tsor const &  rhs 
)
noexcept

◆ operator/()

template<Tensor Tsor>
Tsor ceras::operator/ ( Tsor const &  lhs,
typename Tsor::value_type const &  rhs 
)
noexcept

◆ operator<()

template<Place_Holder Ph>
bool ceras::operator< ( Ph const &  lhs,
Ph const &  rhs 
)

◆ operator<<()

template<Tensor Tsor, typename CharT , typename Traits >
std::basic_ostream<CharT, Traits>& ceras::operator<< ( std::basic_ostream< CharT, Traits > &  os_,
Tsor const &  tsor 
)

◆ operator<=()

template<Place_Holder Ph>
bool ceras::operator<= ( Ph const &  lhs,
Ph const &  rhs 
)

◆ operator==() [1/2]

template<Place_Holder Ph>
bool ceras::operator== ( Ph const &  lhs,
Ph const &  rhs 
)

◆ operator==() [2/2]

template<Variable Var>
bool ceras::operator== ( Var const &  lhs,
Var const &  rhs 
)
noexcept

◆ operator>()

template<Place_Holder Ph>
bool ceras::operator> ( Ph const &  lhs,
Ph const &  rhs 
)

◆ operator>=()

template<Place_Holder Ph>
bool ceras::operator>= ( Ph const &  lhs,
Ph const &  rhs 
)

◆ plus()

template<Expression Lhs_Expression, Expression Rhs_Expression>
constexpr auto ceras::plus ( Lhs_Expression const &  lhs_ex,
Rhs_Expression const &  rhs_ex 
)
constexprnoexcept

◆ polar()

template<Expression Em, Expression Ep>
auto ceras::polar ( Em const &  em,
Ep const &  ep 
)
noexcept

Returns with given magnitude and phase angle.

Parameters
emMagnitude.
epPhase.
auto r = variable{ ... };
auto i = variable{ ... };
auto a = polar( r, i );
auto polar(Em const &em, Ep const &ep) noexcept
Returns with given magnitude and phase angle.
Definition: complex_operator.hpp:123

◆ randn()

template<typename T , typename A = default_allocator<T>>
tensor<T,A> ceras::randn ( std::vector< unsigned long > const &  shape,
mean = T{0},
stddev = T{1} 
)

◆ randn_like()

template<Tensor Tsor>
Tsor ceras::randn_like ( Tsor const &  tsor,
typename Tsor::value_type  mean = 0,
typename Tsor::value_type  stddev = 1 
)

◆ random()

template<typename T , typename A = default_allocator<T>>
tensor<T,A> ceras::random ( std::vector< unsigned long > const &  shape,
min = T{0},
max = T{1} 
)

◆ random_like()

template<Tensor Tsor>
Tsor ceras::random_like ( Tsor const &  tsor,
typename Tsor::value_type  min = 0,
typename Tsor::value_type  max = 1 
)

◆ read_tensor()

template<class _Tp , class _CharT , class _Traits , class _Alloc >
std::basic_istream<_CharT, _Traits>& ceras::read_tensor ( std::basic_istream< _CharT, _Traits > &  __is,
tensor< _Tp, _Alloc > &  __x 
)

◆ real()

template<Expression Real_Ex, Expression Imag_Ex>
Real_Ex ceras::real ( complex< Real_Ex, Imag_Ex > const &  c)
noexcept

@bref Returns the real part of the complex expression.

Parameters
cA complex expression.

◆ reduce()

template<Tensor Tsor, typename Function >
Tsor ceras::reduce ( Tsor const &  ts,
unsigned long  axis,
typename Tsor::value_type const &  init,
Function const &  func,
bool  keepdims = false 
)
noexcept

◆ reduce_mean() [1/2]

template<Expression Ex>
constexpr auto ceras::reduce_mean ( Ex const &  ex)
constexprnoexcept

An alias name of mean_reduce.

◆ reduce_mean() [2/2]

template<Tensor Tsor>
Tsor ceras::reduce_mean ( Tsor const &  tsor)

◆ reduce_sum() [1/2]

template<Expression Ex>
constexpr auto ceras::reduce_sum ( Ex const &  ex)
constexprnoexcept

◆ reduce_sum() [2/2]

template<Tensor Tsor>
Tsor ceras::reduce_sum ( Tsor const &  tsor)

◆ relu()

template<Expression Ex>
auto ceras::relu ( Ex const &  ex)
noexcept

Relu function, an unary operator. Returns x if positive, 0 otherwise.

Parameters
exAn input operator.
auto x = Input();
auto y = Dense( 10, 28*28 )( x );
auto output = relu( y );
auto relu(Ex const &ex) noexcept
Relu function, an unary operator. Returns x if positive, 0 otherwise.
Definition: activation.hpp:259

◆ ReLU()

template<Expression Ex>
auto ceras::ReLU ( Ex const &  ex)
inlinenoexcept

Rectified Linear Unit activation function.

◆ relu6()

template<Expression Ex>
auto ceras::relu6 ( Ex const &  ex)
noexcept

Rectified Linear 6 function, an unary operator. Returns min(max(features, 0), 6).

Parameters
exAn input operator.
auto x = Input();
auto y = Dense( 10, 28*28 )( x );
auto output = relu6( y );
auto relu6(Ex const &ex) noexcept
Rectified Linear 6 function, an unary operator. Returns min(max(features, 0), 6).
Definition: activation.hpp:312

◆ repeat()

template<Tensor Tsor>
Tsor ceras::repeat ( Tsor const &  tsor,
unsigned long  n 
)

◆ replace_placeholder_with_expression()

template<Expression Ex, Place_Holder Ph, Expression Ey>
auto ceras::replace_placeholder_with_expression ( Ex const &  ex,
Ph const &  old_place_holder,
Ey const &  new_expression 
)

Replacing a place_holder with an expression.

Parameters
exCan be a unary operator, binary operator, variable, place_holder, a constant or a value
old_place_holderAn place holder in ex
new_expressionAn expression that will replace old_place_holder in ex.
Returns
A expression inheriting the topology of ex, but with old_place_holder replaced by new_expression

◆ repmat()

template<Tensor Tsor>
Tsor ceras::repmat ( Tsor const &  tsor,
unsigned long  row_rep,
unsigned long  col_rep 
)

◆ Reshape()

auto ceras::Reshape ( std::vector< unsigned long > const &  new_shape,
bool  include_batch_flag = true 
)
inlinenoexcept

Reshapes inputs into the given shape.

◆ reshape()

template<Tensor Tsor>
Tsor ceras::reshape ( Tsor const &  ts,
std::vector< unsigned long > const &  new_shape 
)

◆ save_tensor()

template<Tensor Tsor>
void ceras::save_tensor ( std::string const &  file_name,
Tsor const &  tsor 
)

◆ selu()

template<Expression Ex>
auto ceras::selu ( Ex const &  ex)
inlinenoexcept

Scaled Exponential Linear Unit (SELU) activation function, an unary operator. If x>0, returns 1.0507 x; Otherwise, returns 1.67326*1.0507*(exp(x)-1)

Parameters
exAn input operator
auto x = Input();
auto y = Dense( 10, 28*28 )( x );
auto output = selu( y );
auto selu(Ex const &ex) noexcept
Scaled Exponential Linear Unit (SELU) activation function, an unary operator. If x>0,...
Definition: activation.hpp:67

◆ sigmoid()

template<Expression Ex>
auto ceras::sigmoid ( Ex const &  ex)
inlinenoexcept

Sigmoid function, an unary operator. Returns 1 / (exp(-x) + 1).

Parameters
exAn input operator.
auto x = Input();
auto y = Dense( 10, 28*28 )( x );
auto output = sigmoid( y );
auto sigmoid(Ex const &ex) noexcept
Sigmoid function, an unary operator. Returns 1 / (exp(-x) + 1).
Definition: activation.hpp:186

◆ silu()

template<Expression Ex>
auto ceras::silu ( Ex const &  ex)
noexcept

An alias name of activation swish.

◆ Softmax()

auto ceras::Softmax ( )
inlinenoexcept

Softmax activation function.

◆ softmax() [1/2]

template<Expression Ex>
constexpr auto ceras::softmax ( Ex const &  ex)
constexprnoexcept

Softmax activation function, an unary operator.

Parameters
exAn input operator
auto x = Input();
auto y = Dense( 10, 28*28 )( x );
auto output = softmax( y );
constexpr auto softmax(Ex const &ex) noexcept
Softmax activation function, an unary operator.
Definition: activation.hpp:26

◆ softmax() [2/2]

template<Tensor Tsor>
Tsor ceras::softmax ( Tsor const &  tsor)

◆ softplus()

template<Expression Ex>
auto ceras::softplus ( Ex const &  ex)
inlinenoexcept

Softplus function, an unary operator. Returns log(exp(x)+1).

Parameters
exAn input operator
auto x = Input();
auto y = Dense( 10, 28*28 )( x );
auto output = softplus( y );
auto softplus(Ex const &ex) noexcept
Softplus function, an unary operator. Returns log(exp(x)+1).
Definition: activation.hpp:113

◆ softsign()

template<Expression Ex>
auto ceras::softsign ( Ex const &  ex)
inlinenoexcept

Softsign function, an unary operator. Returns x / (abs(x) + 1).

Parameters
exAn input operator.
auto x = Input();
auto y = Dense( 10, 28*28 )( x );
auto output = softsign( y );
auto softsign(Ex const &ex) noexcept
Softsign function, an unary operator. Returns x / (abs(x) + 1).
Definition: activation.hpp:150

◆ square()

template<Expression Ex>
constexpr auto ceras::square ( Ex const &  ex)
constexprnoexcept

Returns the square of the input

Parameters
exThe input operator.
Returns
An instance of a unary_operator that evaluate the squared value of the input operator.

Example code:

auto e = variable<tensor<float>>{ /*...*/ };
auto square = square(e);
constexpr auto square(Ex const &ex) noexcept
Definition: operation.hpp:563

◆ squared_loss()

template<Expression Lhs_Expression, Expression Rhs_Expression>
constexpr auto ceras::squared_loss ( Lhs_Expression const &  lhs_ex,
Rhs_Expression const &  rhs_ex 
)
constexprnoexcept

◆ squeeze()

template<Tensor Tsor>
Tsor ceras::squeeze ( Tsor const &  tsor)

◆ standard_deviation()

template<Tensor Tsor>
requires std::floating_point<typename Tsor::value_type> Tsor ceras::standard_deviation ( Tsor const &  ts,
unsigned long  axis,
bool  keepdims = false 
)
noexcept

◆ std()

template<Tensor Tsor>
requires std::floating_point<typename Tsor::value_type> Tsor::value_type ceras::std ( Tsor const &  ts)
noexcept

◆ Subtract()

auto ceras::Subtract ( )
inlinenoexcept

Layer that subtracts two layers

Example usage:

auto input = Input(); // (16, )
auto x1 = Dense( 8, 16 )( input );
auto x2 = Dense( 8, 16 )( input );
auto x3 = Subtract()( x1, x2 ); // equivalent to `x1 - x2`
auto m = model{ input, x3 };
auto Subtract() noexcept
Definition: layer.hpp:199

◆ sum() [1/2]

template<Tensor Tsor>
Tsor ceras::sum ( Tsor const &  ts,
unsigned long  axis,
bool  keepdims = false 
)
noexcept

◆ sum() [2/2]

template<Tensor Tsor>
auto ceras::sum ( Tsor const &  tsor)

◆ sum_reduce()

template<Expression Ex>
constexpr auto ceras::sum_reduce ( Ex const &  ex)
constexprnoexcept

◆ swish()

template<Expression Ex>
auto ceras::swish ( Ex const &  ex)
noexcept

Swish activation function.

Reference: Ramachandran, Prajit, Barret Zoph, and Quoc V. Le. “Searching for Activation Functions.” ArXiv:1710.05941 [Cs], October 16, 2017. http://arxiv.org/abs/1710.05941.

Parameters
exInput expression.

◆ tank_shrink()

template<Expression Ex>
auto ceras::tank_shrink ( Ex const &  ex)
noexcept

Tank shrink function.

auto v = variable{ random<float>{ 3, 3 } };
auto c = tank_shrink( v );
auto tank_shrink(Ex const &ex) noexcept
Tank shrink function.
Definition: activation.hpp:579

◆ truncated_normal()

template<typename T , typename A = default_allocator<T>>
tensor<T,A> ceras::truncated_normal ( std::vector< unsigned long > const &  shape,
mean = T{0},
stddev = T{1},
lower = T{0},
upper = T{1} 
)

◆ update_cuda_gemm_threshold()

void ceras::update_cuda_gemm_threshold ( )
inline

◆ UpSampling2D()

auto ceras::UpSampling2D ( unsigned long  stride)
inlinenoexcept

Upsampling layer for 2D inputs.

◆ var()

template<Tensor Tsor>
requires std::floating_point<typename Tsor::value_type> Tsor::value_type ceras::var ( Tsor const &  ts)
noexcept

◆ variance()

template<Tensor Tsor>
requires std::floating_point<typename Tsor::value_type> Tsor ceras::variance ( Tsor const &  ts,
unsigned long  axis,
bool  keepdims = false 
)
noexcept

◆ write_tensor()

template<class _Tp , class _CharT , class _Traits , class _Alloc >
std::basic_ostream<_CharT, _Traits>& ceras::write_tensor ( std::basic_ostream< _CharT, _Traits > &  __os,
tensor< _Tp, _Alloc > const &  __x 
)

◆ zeros()

template<typename T , typename A = default_allocator<T>>
constexpr tensor<T,A> ceras::zeros ( std::vector< unsigned long > const &  shape)
constexpr

◆ zeros_like()

template<Tensor Tsor>
constexpr Tsor ceras::zeros_like ( Tsor const &  tsor)
constexpr

Variable Documentation

◆ Adadelta

auto ceras::Adadelta
inline
Initial value:
= []( auto ... args )
{
return [=]<Expression Ex>( Ex& loss )
{
return adadelta{loss, args...};
};
}
concept Expression
A type that represents a unary operator, a binary operator, a variable, a place_holder,...
Definition: operation.hpp:169

◆ Adagrad

auto ceras::Adagrad
inline
Initial value:
= []( auto ... args )
{
return [=]<Expression Ex>( Ex& loss )
{
return adagrad{loss, args...};
};
}

◆ Adam

auto ceras::Adam
inline
Initial value:
= []( auto ... args )
{
return [=]<Expression Ex>( Ex& loss )
{
return adam{loss, args...};
};
}

◆ Binary_Operator

template<typename T >
concept ceras::Binary_Operator = is_binary_operator_v<T>

A type that represents a binary operator.

@concept Binary_Operator<>

◆ BinaryCrossentropy

auto ceras::BinaryCrossentropy
inline
Initial value:
= []()
{
return []<Expression Ex >( Ex const& output )
{
return [=]<Place_Holder Ph>( Ph const& ground_truth )
{
return binary_cross_entropy_loss( ground_truth, output );
};
};
}
concept Place_Holder
Definition: place_holder.hpp:71
constexpr auto binary_cross_entropy_loss(Lhs_Expression const &ground_truth, Rhs_Expression const &prediction) noexcept
Definition: loss.hpp:91

◆ BinaryCrossEntropy

auto ceras::BinaryCrossEntropy
inline
Initial value:
= []()
{
}
auto BinaryCrossentropy
Definition: loss.hpp:212

◆ CategoricalCrossentropy

auto ceras::CategoricalCrossentropy
inline
Initial value:
= []()
{
return []<Expression Ex >( Ex const& output )
{
return [=]<Place_Holder Ph>( Ph const& ground_truth )
{
return cross_entropy_loss( ground_truth, output );
};
};
}
constexpr auto cross_entropy_loss(Lhs_Expression const &lhs_ex, Rhs_Expression const &rhs_ex) noexcept
Definition: loss.hpp:101

◆ CategoricalCrossEntropy

auto ceras::CategoricalCrossEntropy
inline
Initial value:
= []()
{
}
auto CategoricalCrossentropy
Definition: loss.hpp:196

◆ Complex

template<typename T >
concept ceras::Complex = is_complex_v<T>

A type that represents a complex expression.

@concept Complex

◆ Constant

template<typename T >
concept ceras::Constant = is_constant_v<T>

◆ Expression

template<typename T >
concept ceras::Expression = Operator<T> || Variable<T> || Place_Holder<T> || Constant<T> || Value<T>

A type that represents a unary operator, a binary operator, a variable, a place_holder, a constant or a value.

@concept Expression<>

◆ Hinge

auto ceras::Hinge
inline
Initial value:
= []()
{
return []<Expression Ex >( Ex const& output )
{
return [=]<Place_Holder Ph>( Ph const& ground_truth )
{
return hinge_loss( ground_truth, output );
};
};
}
constexpr auto hinge_loss(Lhs_Expression const &lhs_ex, Rhs_Expression const &rhs_ex) noexcept
Definition: loss.hpp:107

◆ is_binary_operator_v

template<class T >
constexpr bool ceras::is_binary_operator_v = is_binary_operator<T>::value
inlineconstexpr

If T is an instance of a binary_operator, the constant value equals to true. Otherwise this value is false.

◆ is_complex_v

template<typename T >
constexpr bool ceras::is_complex_v = is_complex<T>::value
constexpr

◆ is_constant_v

template<class T >
constexpr bool ceras::is_constant_v = is_constant<T>::value
inlineconstexpr

◆ is_place_holder_v

template<class T >
constexpr bool ceras::is_place_holder_v = is_place_holder<T>::value
inlineconstexpr

◆ is_tensor_v

template<class T >
constexpr bool ceras::is_tensor_v = is_tensor<T>::value
inlineconstexpr

◆ is_unary_operator_v

template<class T >
constexpr bool ceras::is_unary_operator_v = is_unary_operator<T>::value
inlineconstexpr

If T is an instance of a unary_operator, the constant value equals to true. Otherwise this value is false.

◆ is_value_v

template<class T >
constexpr bool ceras::is_value_v = is_value<T>::value
inlineconstexpr

◆ is_variable_v

template<class T >
constexpr bool ceras::is_variable_v = is_variable<T>::value
inlineconstexpr

◆ MAE

auto ceras::MAE
inline
Initial value:
= []()
{
}
auto MeanAbsoluteError
Computes the mean of absolute errors between labels and predictions.
Definition: loss.hpp:162

An alias name of function MeanAbsoluteError.

◆ make_binary_operator

constexpr auto ceras::make_binary_operator
staticconstexpr
Initial value:
= []( auto const& binary_forward_action, auto const& binary_backward_action, std::string const& name="Anonymous Binary Operator" ) noexcept
{
return [&binary_forward_action, &binary_backward_action, &name]( auto const& lhs_op, auto const& rhs_op ) noexcept
{
auto ans = binary_operator{ lhs_op, rhs_op, binary_forward_action, binary_backward_action };
ans.name_ = name;
return ans;
};
}

◆ make_unary_operator

constexpr auto ceras::make_unary_operator
staticconstexpr
Initial value:
= []( auto const& unary_forward_action, auto const& unary_backward_action, std::string const& name="Anonymous Unary Operator" ) noexcept
{
return [&unary_forward_action, &unary_backward_action, &name]( auto const& op ) noexcept
{
auto ans = unary_operator{ op, unary_forward_action, unary_backward_action };
ans.name_ = name;
return ans;
};
}

◆ MeanAbsoluteError

auto ceras::MeanAbsoluteError
inline
Initial value:
= []()
{
return []<Expression Ex >( Ex const& output )
{
return [=]<Place_Holder Ph>( Ph const& ground_truth )
{
return mean_absolute_error( ground_truth, output );
};
};
}
constexpr auto mean_absolute_error(Lhs_Expression const &lhs_ex, Rhs_Expression const &rhs_ex) noexcept
Definition: loss.hpp:42

Computes the mean of absolute errors between labels and predictions.

auto input = place_holder<tensor<float>>{};
auto v = variable<tensor<float>>{ ones<float>({12, 34}) };
auto output = input * v;
auto m = model{ input, output };
auto cm = m.compile( MeanAbsoluteError(), Adam(128/*batch size*/, 0.01f/*learning rate*/) );
auto Adam
Definition: optimizer.hpp:365

see also mean_absolute_error

◆ MeanSquaredError

auto ceras::MeanSquaredError
inline
Initial value:
= []()
{
return []<Expression Ex >( Ex const& output )
{
return [=]<Place_Holder Ph>( Ph const& ground_truth )
{
return mean_squared_error( ground_truth, output );
};
};
}
constexpr auto mean_squared_error(Lhs_Expression const &lhs_ex, Rhs_Expression const &rhs_ex) noexcept
Definition: loss.hpp:24

Computes the mean of squares of errors between labels and predictions.

auto input = place_holder<tensor<float>>{};
auto v = variable<tensor<float>>{ ones<float>({12, 34}) };
auto output = input * v;
auto m = model{ input, output };
auto cm = m.compile( MeanSquareError(), Adam(128/*batch size*/, 0.01f/*learning rate*/) );

see also mean_squared_error

◆ MSE

auto ceras::MSE
inline
Initial value:
= []()
{
return MeanSquaredError();
}
auto MeanSquaredError
Computes the mean of squares of errors between labels and predictions.
Definition: loss.hpp:130

An alias name of function MeanSquaredError.

◆ Operator

template<typename T >
concept ceras::Operator = Unary_Operator<T> || Binary_Operator<T>

A type that represents an unary or a binary operator.

@concept Operator<>

◆ Place_Holder

template<typename T >
concept ceras::Place_Holder = is_place_holder_v<T>

◆ random_generator

std::mt19937 ceras::random_generator {random_seed}
static

◆ random_seed

unsigned long ceras::random_seed = std::chrono::system_clock::now().time_since_epoch().count()
static

◆ RMSprop

auto ceras::RMSprop
inline
Initial value:
= []( auto ... args )
{
return [=]<Expression Ex>( Ex& loss )
{
return rmsprop{loss, args...};
};
}

◆ SGD

auto ceras::SGD
inline
Initial value:
= []( auto ... args )
{
return [=]<Expression Ex>( Ex& loss )
{
return sgd{loss, args...};
};
}

◆ Tensor

template<typename T >
concept ceras::Tensor = is_tensor_v<T>

◆ Unary_Operator

template<typename T >
concept ceras::Unary_Operator = is_unary_operator_v<T>

A type that represents an unary operator.

@concept Unary_Operator<>

◆ Value

template<typename T >
concept ceras::Value = is_value_v<T>

◆ Variable

template<typename T >
concept ceras::Variable = is_variable_v<T>