ceras
yet another deep learning engine
Public Member Functions | Public Attributes | List of all members
ceras::view_4d< T > Struct Template Reference

#include <tensor.hpp>

Inheritance diagram for ceras::view_4d< T >:
ceras::view< T, 4 >

Public Member Functions

constexpr view_4d (T *data=nullptr, unsigned long batch_size=0, unsigned long row=0, unsigned long col=0, unsigned long channel=0) noexcept
 
constexpr auto operator[] (unsigned long index) noexcept
 
constexpr auto operator[] (unsigned long index) const noexcept
 

Public Attributes

T * data_
 The pointer to the start position of the 1-D array. More...
 
unsigned long batch_size_
 The batch size of the 4-D tensor, also the first dimension of the tensor. More...
 
unsigned long row_
 The row of the 4-D tensor, also the second dimension of the tensor. More...
 
unsigned long col_
 The column of the 4-D tensor, also the third dimension of the tensor. More...
 
unsigned long channel_
 The channel of the 4-D tensor, also the last dimension of the tensor. More...
 

Detailed Description

template<typename T>
struct ceras::view_4d< T >

A class viewing a 1-D array as a 4-D tensor. This class is useful when treating an array as a typical 4-D tensor in a neural network, with a shape of [batch_size, row, column, channel].

Constructor & Destructor Documentation

◆ view_4d()

template<typename T >
constexpr ceras::view_4d< T >::view_4d ( T *  data = nullptr,
unsigned long  batch_size = 0,
unsigned long  row = 0,
unsigned long  col = 0,
unsigned long  channel = 0 
)
inlineconstexprnoexcept

Constructor of view_4d

Parameters
dataThe raw pointer to the start position of the 1-D array.
batch_sizeThe first dimension of the 4-D tensor, also for the batch size in the CNN layers.
rowThe second dimension of the 4-D tensor, also for the row in the CNN layers.
colThe third dimension of the 4-D tensor, also for the column in the CNN layers.
channelThe last dimension of the 4-D tensor, also for the channel in the CNN layers.

Member Function Documentation

◆ operator[]() [1/2]

template<typename T >
constexpr auto ceras::view_4d< T >::operator[] ( unsigned long  index) const
inlineconstexprnoexcept

Giving a view_3d interface for operator [].

Parameters
indexThe first dimension of the 4-D tensor.

Example usage:

std::vector<float> array;
array.resize( 16*8*8*3 );
// operations on `array`
auto t = view_4d{ array.data(), 16, 8, 8, 3 };
float v0123 = t[0][1][2][3];
view_1d< T > array
Definition: tensor.hpp:412
constexpr view_4d(T *data=nullptr, unsigned long batch_size=0, unsigned long row=0, unsigned long col=0, unsigned long channel=0) noexcept
Definition: tensor.hpp:1347

◆ operator[]() [2/2]

template<typename T >
constexpr auto ceras::view_4d< T >::operator[] ( unsigned long  index)
inlineconstexprnoexcept

Giving a view_3d interface for operator [].

Parameters
indexThe first dimension of the 4-D tensor.

Example usage:

std::vector<float> array;
array.resize( 16*8*8*3 );
auto t = view_4d{ array.data(), 16, 8, 8, 3 };
t[0][1][2][3] = 1.0;

Member Data Documentation

◆ batch_size_

template<typename T >
unsigned long ceras::view_4d< T >::batch_size_

The batch size of the 4-D tensor, also the first dimension of the tensor.

◆ channel_

template<typename T >
unsigned long ceras::view_4d< T >::channel_

The channel of the 4-D tensor, also the last dimension of the tensor.

◆ col_

template<typename T >
unsigned long ceras::view_4d< T >::col_

The column of the 4-D tensor, also the third dimension of the tensor.

◆ data_

template<typename T >
T* ceras::view_4d< T >::data_

The pointer to the start position of the 1-D array.

◆ row_

template<typename T >
unsigned long ceras::view_4d< T >::row_

The row of the 4-D tensor, also the second dimension of the tensor.


The documentation for this struct was generated from the following file: