ceras
yet another deep learning engine
Public Types | Public Member Functions | Public Attributes | List of all members
ceras::model< Ex, Ph > Struct Template Reference

#include <model.hpp>

Public Types

typedef Ph input_layer_type
 
typedef Ex output_layer_type
 

Public Member Functions

input_layer_type input () const noexcept
 
output_layer_type output () const noexcept
 
 model (input_layer_type const &place_holder, output_layer_type const &expression)
 
template<Tensor Tsor>
auto predict (Tsor const &input_tensor)
 
template<Expression Exp>
auto operator() (Exp const &ex) const noexcept
 
template<typename Loss , typename Optimizer >
auto compile (Loss const &l, Optimizer const &o)
 
void trainable (bool t)
 
void save_weights (std::string const &file)
 
void load_weights (std::string const &file)
 
void summary (std::string const &file_name=std::string{}) const noexcept
 

Public Attributes

output_layer_type expression_
 output layer of the model. More...
 
input_layer_type place_holder_
 

Detailed Description

template<Expression Ex, Place_Holder Ph>
struct ceras::model< Ex, Ph >

Groups an input layer (a place holder) and an output layer (an expression template) into an object.

Template Parameters
ExThe expression template for the output layer.
PhThe place holder expression for the input layer

Member Typedef Documentation

◆ input_layer_type

template<Expression Ex, Place_Holder Ph>
typedef Ph ceras::model< Ex, Ph >::input_layer_type

◆ output_layer_type

template<Expression Ex, Place_Holder Ph>
typedef Ex ceras::model< Ex, Ph >::output_layer_type

Constructor & Destructor Documentation

◆ model()

template<Expression Ex, Place_Holder Ph>
ceras::model< Ex, Ph >::model ( input_layer_type const &  place_holder,
output_layer_type const &  expression 
)
inline
Parameters
place_holderThe input layer of the model, a place holder.
expressionThe output layer of the model, a expression template.

Example code to generate a model:

auto input = Input();
auto l1 = relu( Dense( 1024, 28*28 )( input ) );
auto output = sigmoid( Dense( 10, 1024 )( l1 ) );
auto m = model{ input, output };
auto relu(Ex const &ex) noexcept
Relu function, an unary operator. Returns x if positive, 0 otherwise.
Definition: activation.hpp:259
auto sigmoid(Ex const &ex) noexcept
Sigmoid function, an unary operator. Returns 1 / (exp(-x) + 1).
Definition: activation.hpp:186
auto Dense(unsigned long output_size, unsigned long input_size, bool use_bias=true, float kernel_regularizer_l1=0.0f, float kernel_regularizer_l2=0.0f, float bias_regularizer_l1=0.0f, float bias_regularizer_l2=0.0f)
Densly-connected layer.
Definition: layer.hpp:92
auto Input()
Definition: layer.hpp:15
model(input_layer_type const &place_holder, output_layer_type const &expression)
Definition: model.hpp:327
output_layer_type output() const noexcept
Definition: model.hpp:313
input_layer_type input() const noexcept
Definition: model.hpp:308

Member Function Documentation

◆ compile()

template<Expression Ex, Place_Holder Ph>
template<typename Loss , typename Optimizer >
auto ceras::model< Ex, Ph >::compile ( Loss const &  l,
Optimizer const &  o 
)
inline

Compile the model for training

Parameters
lThe loss to minimize.
oThe optimizer to do the optimization.
Returns
An instance of compiled_model.

Example useage:

model m{ ... };
unsigned long batch_size = 16;
float learning_rate = 0.001f;
auto cm = m.compile( MeanSquaredError(), SGD( batch_size, learning_rate ) );
auto SGD
Definition: optimizer.hpp:373
auto MeanSquaredError
Computes the mean of squares of errors between labels and predictions.
Definition: loss.hpp:130

◆ input()

template<Expression Ex, Place_Holder Ph>
input_layer_type ceras::model< Ex, Ph >::input ( ) const
inlinenoexcept

Returns the input layer of the model, which is a place_holder.

◆ load_weights()

template<Expression Ex, Place_Holder Ph>
void ceras::model< Ex, Ph >::load_weights ( std::string const &  file)
inline

Loads all variables from a file

◆ operator()()

template<Expression Ex, Place_Holder Ph>
template<Expression Exp>
auto ceras::model< Ex, Ph >::operator() ( Exp const &  ex) const
inlinenoexcept

Generating a new expression by using the current model.

Parameters
exAn expression that represents the input to the model.
Returns
An expression that replacing the input node with a new epxression.

Example code

auto x = Input(); // input, (28*28,)
auto y = Dense( 128, 28*28 )( x );
auto m1 = model( x, y ); // this model is [(28*28,) -> (128,)]
auto u = Input(); // new input, (32,)
auto v = Dense( 28*28, 32 )( u );
auto m2 = model( u, v );
auto input = Input(); // (32, )
auto ouptut = m1( m2( input ) ); // this new expression is [(32,) -> (28*28,) -> (128,)], note x is not in this expression any more
auto m = model( input, output ); // create a new model
*auto y
Definition: operation.hpp:627

◆ output()

template<Expression Ex, Place_Holder Ph>
output_layer_type ceras::model< Ex, Ph >::output ( ) const
inlinenoexcept

Returns the output layer of the model.

◆ predict()

template<Expression Ex, Place_Holder Ph>
template<Tensor Tsor>
auto ceras::model< Ex, Ph >::predict ( Tsor const &  input_tensor)
inline

Making prediction by binding the nput data to the place_holder_ and evaluating expression_.

Parameters
input_tensorThe input samples.
Returns
The result this model predicts.

Example to predict

auto input = Input();
auto l1 = relu( Dense( 1024, 28*28 )( input ) );
auto output = sigmoid( Dense( 10, 1024 )( l1 ) );
// ... train the model after defining a loss and an optimizer
auto m = model{ input, output };
auto test_data = random( {128, 28*28} ); // batch size is 128
auto result = model.predict( test_data ); // should produce an tensor of (128, 10)
tensor< T, A > random(std::vector< unsigned long > const &shape, T min=T{0}, T max=T{1})
Definition: tensor.hpp:869

◆ save_weights()

template<Expression Ex, Place_Holder Ph>
void ceras::model< Ex, Ph >::save_weights ( std::string const &  file)
inline

Writes all variables to a file

◆ summary()

template<Expression Ex, Place_Holder Ph>
void ceras::model< Ex, Ph >::summary ( std::string const &  file_name = std::string{}) const
inlinenoexcept

Print the model summary to console or to a file.

Parameters
file_nameThe file to save the summary. If empty, the summary will be printed to console. Empty by default.

◆ trainable()

template<Expression Ex, Place_Holder Ph>
void ceras::model< Ex, Ph >::trainable ( bool  t)
inline

Member Data Documentation

◆ expression_

template<Expression Ex, Place_Holder Ph>
output_layer_type ceras::model< Ex, Ph >::expression_

output layer of the model.

◆ place_holder_

template<Expression Ex, Place_Holder Ph>
input_layer_type ceras::model< Ex, Ph >::place_holder_

The documentation for this struct was generated from the following file: